IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Hausman Tests for Inefficient Estimators: Application to Demand for Health Care Service (revised)

The Hausman (1978) test is based on the vector of differences of two estimators. It is usually assumed that one of the estimators is fully efficient, since this simplifies calculation of the test statistic. However, this assumption limits the applicability of the test, since widely used estimators such as the generalized method of moments (GMM) or quasi maximum likelihood (QML) are often not fully efficient. This paper shows that the test may easily be implemented, using well-known methods, when neither estimator is efficient. To illustrate, we present both simulation results as well as empirical results for utilization of health care services.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC) in its series UFAE and IAE Working Papers with number 509.02.

in new window

Length: 19
Date of creation: 16 Apr 2002
Date of revision:
Handle: RePEc:aub:autbar:509.02
Contact details of provider: Postal: 08193, Bellaterra, Barcelona
Phone: 34 93 592 1203
Fax: +34 93 542-1223
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andr? Romeu-Santana & ?gel M. Vera-Hern?dez, . "A Semi-Nonparametric Estimator For Counts With An Endogenous Dummy. Variable," UFAE and IAE Working Papers 452.00, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  2. Windmeijer, F A G & Silva, J M C Santos, 1997. "Endogeneity in Count Data Models: An Application to Demand for Health Care," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 281-94, May-June.
  3. Hausman, Jerry A, 1978. "Specification Tests in Econometrics," Econometrica, Econometric Society, vol. 46(6), pages 1251-71, November.
  4. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  5. van Ophem, Hans, 2000. "Modeling Selectivity in Count-Data Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 503-11, October.
  6. Terza, Joseph V., 1998. "Estimating count data models with endogenous switching: Sample selection and endogenous treatment effects," Journal of Econometrics, Elsevier, vol. 84(1), pages 129-154, May.
  7. �ngel Marcos Vera-Hernández, 1999. "Duplicate coverage and demand for health care. The case of Catalonia," Health Economics, John Wiley & Sons, Ltd., vol. 8(7), pages 579-598.
  8. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-66, July.
  9. Ruud, Paul A., 1984. "Tests of Specification in Econometrics," Department of Economics, Working Paper Series qt4kq8m0hf, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
  10. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-70, September.
  11. Gurmu, Shiferaw, 1997. "Semi-Parametric Estimation of Hurdle Regression Models with an Application to Medicaid Utilization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 225-43, May-June.
  12. Browning, Martin & Meghir, Costas, 1991. "The Effects of Male and Female Labor Supply on Commodity Demands," Econometrica, Econometric Society, vol. 59(4), pages 925-51, July.
  13. Burnside, Craig & Eichenbaum, Martin S, 1996. "Small-Sample Properties of GMM-Based Wald Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 294-308, July.
  14. Winfried Pohlmeier & Volker Ulrich, 1995. "An Econometric Model of the Two-Part Decisionmaking Process in the Demand for Health Care," Journal of Human Resources, University of Wisconsin Press, vol. 30(2), pages 339-361.
  15. Partha Deb & Ann M. Holmes, 2000. "Estimates of use and costs of behavioural health care: a comparison of standard and finite mixture models," Health Economics, John Wiley & Sons, Ltd., vol. 9(6), pages 475-489.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aub:autbar:509.02. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Xavier Vila)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.