IDEAS home Printed from https://ideas.repec.org/p/att/wimass/9704.html
   My bibliography  Save this paper

A Bayesian Interpretation of Extremim Estimators

Author

Listed:
  • El-Gamal, M.A.

Abstract

Extremum estimation is typically an ad hoc semi-parametric estimation procedure which is only justified on the basis of the asymptotic properties of the estimators. For a fixed finite data set, consider a large number of investigations using different extremum estimators to estimate the same parameter vector. The resulting empirical distribution of point estimates can be shown to coincide with a Bayesian posterior measure on the parameter space induced by a minimum information procedure. The Bayesian interpretation serves a number of purposes ranging from lending legitimacy to the use of those procedures in small sample problems, to helping prove asymptotic properties by reference to Bayes central limit theorems, to laying a foundation for combining point estimates from various extremum estimation experiments for statistical decision processes.

Suggested Citation

  • El-Gamal, M.A., 1997. "A Bayesian Interpretation of Extremim Estimators," Working papers 9704, Wisconsin Madison - Social Systems.
  • Handle: RePEc:att:wimass:9704
    as

    Download full text from publisher

    File URL: http://www.ssc.wisc.edu/econ/archive/wp9704.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Zellner, A., 1988. "Optimal Information-Processing And Bayes' Theorem," Papers m8803, Southern California - Department of Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    EVALUATION ; ECONOMIC MODELS;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:att:wimass:9704. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ailsenne Sumwalt). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.