IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0506137.html
   My bibliography  Save this paper

The Geometry of Crashes - A Measure of the Dynamics of Stock Market Crises

Author

Listed:
  • Tanya Ara'ujo
  • Francisco Louc{c}~a

Abstract

This paper investigates the dynamics of stocks in the S&P500 index for the last 30 years. Using a stochastic geometry technique, we investigate the evolution of the market space and define a new measure for that purpose, which is a robust index of the dynamics of the market structure and provides information on the intensity and the sectoral impact of the crises. With this measure, we analyze the effects of some extreme phenomena on the geometry of the market. Nine crashes between 1987 and 2001 are compared by looking at the way they modify the shape of the manifold that describes the S&P500 market space. These crises are identified as (a) structural, (b) general and (c) local.

Suggested Citation

  • Tanya Ara'ujo & Francisco Louc{c}~a, 2005. "The Geometry of Crashes - A Measure of the Dynamics of Stock Market Crises," Papers physics/0506137, arXiv.org, revised Jul 2005.
  • Handle: RePEc:arx:papers:physics/0506137
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0506137
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. Mendes, R.Vilela, 2001. "Structure-generating mechanisms in agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 537-561.
    3. A. Johansen & D. Sornette, 2002. "Endogenous versus Exogenous Crashes in Financial Markets," Papers cond-mat/0210509, arXiv.org.
    4. Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N., 2001. "Levels of complexity in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 16-27.
    5. Vilela Mendes, R. & Araújo, Tanya & Louçã, Francisco, 2003. "Reconstructing an economic space from a market metric," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 635-650.
    6. Di Matteo, T. & Aste, T. & Mantegna, R.N., 2004. "An interest rates cluster analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(1), pages 181-188.
    7. Lillo, Fabrizio & Mantegna, Rosario N, 2004. "Dynamics of a financial market index after a crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 125-134.
    8. Kullmann, L & Kertész, J & Mantegna, R.N, 2000. "Identification of clusters of companies in stock indices via Potts super-paramagnetic transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 412-419.
    9. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    10. Matteo Marsili, 2002. "Dissecting financial markets: Sectors and states," Papers cond-mat/0207156, arXiv.org.
    11. Matteo Marsili, 2002. "Dissecting financial markets: sectors and states," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 297-302.
    12. Anders Johansen & Didier Sornette, 2000. "The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash," Papers cond-mat/0004263, arXiv.org, revised May 2000.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naylor, Michael J. & Rose, Lawrence C. & Moyle, Brendan J., 2007. "Topology of foreign exchange markets using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 199-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanya Araujo & Francisco Louca, 2007. "The geometry of crashes. A measure of the dynamics of stock market crises," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 63-74.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    4. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    5. Bolgorian, Meysam & Raei, Reza, 2010. "Convergence of fundamentalists and chartists’ expectations: An alarm for stock market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3822-3827.
    6. Yelibi, Lionel & Gebbie, Tim, 2020. "Fast Super-Paramagnetic Clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. Aoki, Masanao & Hawkins, Raymond, 2009. "Macroeconomic Relaxation: Adjustment Processes of Hierarchical Economic Structures," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-21.
    8. Dieter Hendricks & Tim Gebbie & Diane Wilcox, 2015. "Detecting intraday financial market states using temporal clustering," Papers 1508.04900, arXiv.org, revised Feb 2017.
    9. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    10. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    11. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    12. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    13. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    14. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    15. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    16. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    17. Brida, Juan Gabriel & Risso, Wiston Adrián, 2008. "Multidimensional minimal spanning tree: The Dow Jones case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5205-5210.
    18. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    19. Luis Lorenzo & Javier Arroyo, 2023. "Online risk-based portfolio allocation on subsets of crypto assets applying a prototype-based clustering algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    20. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0506137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.