IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

State Tameness: A New Approach for Credit Constrains

  • Jaime A. Londo\~no
Registered author(s):

    We propose a new definition for tameness within the model of security prices as It\^o processes that is risk-aware. We give a new definition for arbitrage and characterize it. We then prove a theorem that can be seen as an extension of the second fundamental theorem of asset pricing, and a theorem for valuation of contingent claims of the American type. The valuation of European contingent claims and American contingent claims that we obtain does not require the full range of the volatility matrix. The technique used to prove the theorem on valuation of American contingent claims does not depend on the Doob-Meyer decomposition of super-martingales; its proof is constructive and suggest and alternative way to find approximations of stopping times that are close to optimal.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/math/0305274
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number math/0305274.

    as
    in new window

    Length:
    Date of creation: May 2003
    Date of revision: Feb 2004
    Publication status: Published in Electronic Communications in Probability, 9, (2004), 1-13
    Handle: RePEc:arx:papers:math/0305274
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Schweizer, Martin, 1992. "Martingale densities for general asset prices," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 363-378.
    2. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    3. Battig, Robert J & Jarrow, Robert A, 1999. "The Second Fundamental Theorem of Asset Pricing: A New Approach," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1219-35.
    4. Robert A. Jarrow & Dilip B. Madan, 1991. "A Characterization of Complete Security Markets On A Brownian Filtration," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 31-43.
    5. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
    6. Willard, Gregory A & Dybvig, Philip H, 1999. "Empty Promises and Arbitrage," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 807-34.
    7. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    8. Freddy Delbaen, 1992. "Representing Martingale Measures When Asset Prices Are Continuous And Bounded," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 107-130.
    9. Clark, Stephen A., 1993. "The valuation problem in arbitrage price theory," Journal of Mathematical Economics, Elsevier, vol. 22(5), pages 463-478.
    10. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    11. Hindy, Ayman, 1995. "Viable prices in financial markets with solvency constraints," Journal of Mathematical Economics, Elsevier, vol. 24(2), pages 105-135.
    12. Peter Lakner, 1993. "Martingale Measures For A Class of Right-Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 3(1), pages 43-53.
    13. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-50.
    14. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0305274. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.