IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0208398.html
   My bibliography  Save this paper

Growth and Fluctuations of Personal Income

Author

Listed:
  • Yoshi Fujiwara
  • Wataru Souma
  • Hideaki Aoyama
  • Taisei Kaizoji
  • Masanao Aoki

Abstract

Pareto's law states that the distribution of personal income obeys a power-law in the high-income range, and has been supported by international observations. Researchers have proposed models over a century since its discovery. However, the dynamical nature of personal income has been little studied hitherto, mostly due to the lack of empirical work. Here we report the first such study, an examination of the fluctuations in personal income of about 80,000 high-income taxpayers in Japan for two consecutive years, 1997 and 1998, when the economy was relatively stable. We find that the distribution of the growth rate in one year is independent of income in the previous year. This fact, combined with an approximate time-reversal symmetry, leads to the Pareto law, thereby explaining it as a consequence of a stable economy. We also derive a scaling relation between positive and negative growth rates, and show good agreement with the data. These findings provide the direct observation of the dynamical process of personal income flow not yet studied as much as for companies.

Suggested Citation

  • Yoshi Fujiwara & Wataru Souma & Hideaki Aoyama & Taisei Kaizoji & Masanao Aoki, 2002. "Growth and Fluctuations of Personal Income," Papers cond-mat/0208398, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0208398
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0208398
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    2. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    3. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernando Quevedo & María N. Quevedo, 2016. "Income distribution in the Colombian economy from an econophysics perspective," Revista Cuadernos de Economía, Universidad Nacional de Colombia -FCE - CID, vol. 35(69), pages 691-707, April.
    2. Néda, Zoltán & Gere, István & Biró, Tamás S. & Tóth, Géza & Derzsy, Noemi, 2020. "Scaling in income inequalities and its dynamical origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Smerlak, Matteo, 2016. "Thermodynamics of inequalities: From precariousness to economic stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 40-50.
    4. J. R. Iglesias & R. M. C. de Almeida, 2011. "Entropy and equilibrium state of free market models," Papers 1108.5725, arXiv.org.
    5. Ines Heck & Jakob Kapeller & Rafael Wildauer, 2020. "Vermögenskonzentration in Österreich," Working Paper Reihe der AK Wien - Materialien zu Wirtschaft und Gesellschaft 206, Kammer für Arbeiter und Angestellte für Wien, Abteilung Wirtschaftswissenschaft und Statistik.
    6. Braun, Dieter, 2006. "Nonequilibrium thermodynamics of wealth condensation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 714-722.
    7. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    8. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    9. Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
    10. Newby, Michael & Behr, Adam & Feizabadi, Mitra Shojania, 2011. "Investigating the distribution of personal income obtained from the recent U.S. data," Economic Modelling, Elsevier, vol. 28(3), pages 1170-1173, May.
    11. Zoltan Neda & Istvan Gere & Tamas S. Biro & Geza Toth & Noemi Derzsy, 2019. "Scaling in Income Inequalities and its Dynamical Origin," Papers 1911.02449, arXiv.org, revised Mar 2020.
    12. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    13. Düring, B. & Toscani, G., 2007. "Hydrodynamics from kinetic models of conservative economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 493-506.
    14. Chong, Carsten & Klüppelberg, Claudia, 2019. "Partial mean field limits in heterogeneous networks," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 4998-5036.
    15. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    16. Venkatasubramanian, Venkat & Luo, Yu & Sethuraman, Jay, 2015. "How much inequality in income is fair? A microeconomic game theoretic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 120-138.
    17. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    18. Kočišová, J. & Horváth, D. & Brutovský, B., 2009. "The efficiency of individual optimization in the conditions of competitive growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3585-3592.
    19. T. Kämpke & R. Pestel & F.J. Radermacher, 2003. "A Computational Concept for Normative Equity," European Journal of Law and Economics, Springer, vol. 15(2), pages 129-163, March.
    20. Nicolas Bouleau & Christophe Chorro, 2015. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Documents de travail du Centre d'Economie de la Sorbonne 15024, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0208398. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.