IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.19225.html
   My bibliography  Save this paper

Bipartiteness in Progressive Second-Price Multi-Auction Networks with Perfect Substitute

Author

Listed:
  • Jordana Blazek
  • Frederick C. Harris Jr

Abstract

We consider a bipartite network of buyers and sellers, where the sellers run locally independent Progressive Second-Price (PSP) auctions, and buyers may participate in multiple auctions, forming a multi-auction market with perfect substitute. The paper develops a projection-based influence framework for decentralized PSP auctions. We formalize primary and expanded influence sets using projections on the active bid index set and show how partial orders on bid prices govern allocation, market shifts, and the emergence of saturated one-hop shells. Our results highlight the robustness of PSP auctions in decentralized environments by introducing saturated components and a structured framework for phase transitions in multi-auction dynamics. This structure ensures deterministic coverage of the strategy space, enabling stable and truthful embedding in the larger game. We further model intra-round dynamics using an index to capture coordinated asynchronous seller updates coupled through buyers' joint constraints. Together, these constructions explain how local interactions propagate across auctions and gives premise for coherent equilibria--without requiring global information or centralized control.

Suggested Citation

  • Jordana Blazek & Frederick C. Harris Jr, 2025. "Bipartiteness in Progressive Second-Price Multi-Auction Networks with Perfect Substitute," Papers 2511.19225, arXiv.org.
  • Handle: RePEc:arx:papers:2511.19225
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.19225
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.19225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.