IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.18804.html
   My bibliography  Save this paper

Sentiment Analysis of Financial Text Using Quantum Language Processing QDisCoCirc

Author

Listed:
  • Takayuki Sakuma

Abstract

We apply quantum distributional compositional circuit (QDisCoCirc) to 3-class sentiment analysis of financial text. In our classical simulations, we keep the Hilbert-space dimension manageable by decomposing each sentence into short contiguous chunks. Each chunk is mapped to a shallow quantum circuit, and the resulting Bloch vectors are used as a sequence of quantum tokens. Simple averaging of chunk vectors ignores word order and syntactic roles. We therefore add a small Transformer encoder over the raw Bloch-vector sequence and attach a CCG-based type embedding to each chunk. This hybrid design preserves physically interpretable semantic axes of quantum tokens while allowing the classical side to model word order and long-range dependencies. The sequence model improves test macro-F1 over the averaging baseline and chunk-level attribution further shows that evidential mass concentrates on a small number of chunks, that type embeddings are used more reliably for correctly predicted sentences. For real-world quantum language processing applications in finance, future key challenges include circuit designs that avoid chunking and the design of inter-chunk fusion layers.

Suggested Citation

  • Takayuki Sakuma, 2025. "Sentiment Analysis of Financial Text Using Quantum Language Processing QDisCoCirc," Papers 2511.18804, arXiv.org.
  • Handle: RePEc:arx:papers:2511.18804
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.18804
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.18804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.