FinBloom: Knowledge Grounding Large Language Model with Real-time Financial Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
- Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014.
"Good debt or bad debt: Detecting semantic orientations in economic texts,"
Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
- Pekka Malo & Ankur Sinha & Pyry Takala & Pekka Korhonen & Jyrki Wallenius, 2013. "Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts," Papers 1307.5336, arXiv.org, revised Jul 2013.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
- Baptiste Lefort & Eric Benhamou & Jean-Jacques Ohana & David Saltiel & Beatrice Guez, 2024. "Optimizing Performance: How Compact Models Match or Exceed GPT's Classification Capabilities through Fine-Tuning," Papers 2409.11408, arXiv.org.
- Ching-Nam Hang & Pei-Duo Yu & Roberto Morabito & Chee-Wei Tan, 2024. "Large Language Models Meet Next-Generation Networking Technologies: A Review," Future Internet, MDPI, vol. 16(10), pages 1-29, October.
- Kirtac, Kemal & Germano, Guido, 2024.
"Sentiment trading with large language models,"
Finance Research Letters, Elsevier, vol. 62(PB).
- Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," LSE Research Online Documents on Economics 122592, London School of Economics and Political Science, LSE Library.
- Kemal Kirtac & Guido Germano, 2024. "Sentiment trading with large language models," Papers 2412.19245, arXiv.org.
- Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022.
"Media-expressed tone, option characteristics, and stock return predictability,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2019. "Media-expressed tone, Option Characteristics, and Stock Return Predictability," IRTG 1792 Discussion Papers 2019-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Xia Li & Hanghang Zheng & Xiao Chen & Hong Liu & Mao Mao, 2025. "Class-Imbalanced-Aware Adaptive Dataset Distillation for Scalable Pretrained Model on Credit Scoring," Papers 2501.10677, arXiv.org, revised Jan 2025.
- Lezhi Li & Ting-Yu Chang & Hai Wang, 2023. "Multimodal Gen-AI for Fundamental Investment Research," Papers 2401.06164, arXiv.org.
- Fengbin Zhu & Junfeng Li & Liangming Pan & Wenjie Wang & Fuli Feng & Chao Wang & Huanbo Luan & Tat-Seng Chua, 2025. "FinTMMBench: Benchmarking Temporal-Aware Multi-Modal RAG in Finance," Papers 2503.05185, arXiv.org.
- Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
- Thanos Konstantinidis & Giorgos Iacovides & Mingxue Xu & Tony G. Constantinides & Danilo Mandic, 2024. "FinLlama: Financial Sentiment Classification for Algorithmic Trading Applications," Papers 2403.12285, arXiv.org.
- Travis Adams & Andrea Ajello & Diego Silva & Francisco Vazquez-Grande, 2023. "More than Words: Twitter Chatter and Financial Market Sentiment," Papers 2305.16164, arXiv.org.
- Chandan Singh & Armin Askari & Rich Caruana & Jianfeng Gao, 2023. "Augmenting interpretable models with large language models during training," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Xiao-Yang Liu & Guoxuan Wang & Hongyang Yang & Daochen Zha, 2023. "FinGPT: Democratizing Internet-scale Data for Financial Large Language Models," Papers 2307.10485, arXiv.org, revised Nov 2023.
- Borchert, Philipp & Coussement, Kristof & De Weerdt, Jochen & De Caigny, Arno, 2024. "Industry-sensitive language modeling for business," European Journal of Operational Research, Elsevier, vol. 315(2), pages 691-702.
- Martina Halouskov'a & v{S}tefan Ly'ocsa, 2025. "Forecasting U.S. equity market volatility with attention and sentiment to the economy," Papers 2503.19767, arXiv.org.
- Frank Xing, 2024. "Designing Heterogeneous LLM Agents for Financial Sentiment Analysis," Papers 2401.05799, arXiv.org.
- Priyank Sonkiya & Vikas Bajpai & Anukriti Bansal, 2021. "Stock price prediction using BERT and GAN," Papers 2107.09055, arXiv.org.
- Duygu Ider & Stefan Lessmann, 2022. "Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis of BERT Classifiers and Weak Supervision," Papers 2204.05781, arXiv.org, revised Mar 2023.
- Moritz Scherrmann, 2023. "Multi-Label Topic Model for Financial Textual Data," Papers 2311.07598, arXiv.org.
- Hoyoung Lee & Youngsoo Choi & Yuhee Kwon, 2024. "Quantifying Qualitative Insights: Leveraging LLMs to Market Predict," Papers 2411.08404, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-AIN-2025-03-24 (Artificial Intelligence)
- NEP-BIG-2025-03-24 (Big Data)
- NEP-CMP-2025-03-24 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.18471. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.