IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.13440.html

Random sets from the perspective of metric statistics

Author

Listed:
  • Daisuke Kurisu
  • Yuta Okamoto
  • Taisuke Otsu

Abstract

Since the seminal work by Beresteanu and Molinari(2008), the random set theory and related inference methods have been widely applied in partially identified econometric models. Meanwhile, there is an emerging field in statistics for studying random objects in metric spaces, called metric statistics. This paper clarifies a relationship between two fundamental concepts in these literatures, the Aumann and Fr\'echet means, and presents some applications of metric statistics to econometric problems involving random sets.

Suggested Citation

  • Daisuke Kurisu & Yuta Okamoto & Taisuke Otsu, 2025. "Random sets from the perspective of metric statistics," Papers 2511.13440, arXiv.org.
  • Handle: RePEc:arx:papers:2511.13440
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.13440
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurisu, Daisuke & Otsu, Taisuke, 2025. "Model averaging for global Fréchet regression," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
    2. Molchanov,Ilya & Molinari,Francesca, 2018. "Random Sets in Econometrics," Cambridge Books, Cambridge University Press, number 9781107121201, January.
    3. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    4. Kurisu, Daisuke & Otsu, Taisuke, 2025. "Model averaging for global Fréchet regression," LSE Research Online Documents on Economics 126533, London School of Economics and Political Science, LSE Library.
    5. Danielle C. Tucker & Yichao Wu & Hans-Georg Müller, 2023. "Variable Selection for Global Fréchet Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1023-1037, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    2. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    3. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    4. Levon Barseghyan & Maura Coughlin & Francesca Molinari & Joshua C. Teitelbaum, 2021. "Heterogeneous Choice Sets and Preferences," Econometrica, Econometric Society, vol. 89(5), pages 2015-2048, September.
    5. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    6. Vira Semenova, 2023. "Debiased Machine Learning of Aggregated Intersection Bounds and Other Causal Parameters," Papers 2303.00982, arXiv.org, revised May 2025.
    7. Hiroaki Kaido & Yi Zhang, 2019. "Robust Likelihood Ratio Tests for Incomplete Economic Models," Papers 1910.04610, arXiv.org, revised Dec 2019.
    8. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    9. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    10. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    11. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    12. Andrew Chesher & Adam Rosen, 2015. "Characterizations of identified sets delivered by structural econometric models," CeMMAP working papers CWP63/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Donald S. Poskitt & Xueyan Zhao, 2023. "Bootstrap Hausdorff Confidence Regions for Average Treatment Effect Identified Sets," Monash Econometrics and Business Statistics Working Papers 9/23, Monash University, Department of Econometrics and Business Statistics.
    14. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    15. Kurisu, Daisuke & Otsu, Taisuke, 2025. "Model averaging for global Fréchet regression," LSE Research Online Documents on Economics 126533, London School of Economics and Political Science, LSE Library.
    16. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    17. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    18. Laurens Cherchye & Bram De Rock & Arthur Lewbel & Frederic Vermeulen, 2015. "Sharing Rule Identification for General Collective Consumption Models," Econometrica, Econometric Society, vol. 83(5), pages 2001-2041, September.
    19. Nicky L. Grant & Richard J. Smith, 2018. "GEL-based inference with unconditional moment inequality restrictions," CeMMAP working papers 23/18, Institute for Fiscal Studies.
    20. Karun Adusumilli & Taisuke Otsu, 2017. "Empirical Likelihood for Random Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1064-1075, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.13440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.