IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.08662.html

Robust distortion risk metrics and portfolio optimization

Author

Listed:
  • Peng Liu
  • Steven Vanduffel
  • Yi Xia

Abstract

We establish sharp upper and lower bounds for distortion risk metrics under distributional uncertainty. The uncertainty sets are characterized by four key features of the underlying distribution: mean, variance, unimodality, and Wasserstein distance to a reference distribution. We first examine very general distortion risk metrics, assuming only finite variation for the underlying distortion function and without requiring continuity or monotonicity. This broad framework includes notable distortion risk metrics such as range value-at-risk, glue value-at-risk, Gini deviation, mean-median deviation and inter-quantile difference. In this setting, when the uncertainty set is characterized by a fixed mean, variance and a Wasserstein distance, we determine both the worst- and best-case values of a given distortion risk metric and identify the corresponding extremal distribution. When the uncertainty set is further constrained by unimodality with a fixed inflection point, we establish for the case of absolutely continuous distortion functions the extremal values along with their respective extremal distributions. We apply our results to robust portfolio optimization and model risk assessment offering improved decision-making under model uncertainty.

Suggested Citation

  • Peng Liu & Steven Vanduffel & Yi Xia, 2025. "Robust distortion risk metrics and portfolio optimization," Papers 2511.08662, arXiv.org.
  • Handle: RePEc:arx:papers:2511.08662
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.08662
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Shao & Zhe George Zhang, 2024. "Extreme-Case Distortion Risk Measures: A Unification and Generalization of Closed-Form Solutions," Mathematics of Operations Research, INFORMS, vol. 49(4), pages 2341-2355, November.
    2. Shalit, Haim & Yitzhaki, Shlomo, 1984. "Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets," Journal of Finance, American Finance Association, vol. 39(5), pages 1449-1468, December.
    3. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    4. Jose Blanchet & Lin Chen & Xun Yu Zhou, 2022. "Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances," Management Science, INFORMS, vol. 68(9), pages 6382-6410, September.
    5. Jun Cai & Jonathan Yu-Meng Li & Tiantian Mao, 2025. "Distributionally Robust Optimization Under Distorted Expectations," Operations Research, INFORMS, vol. 73(2), pages 969-985, March.
    6. Brennan, M.J. & Solanki, R., 1981. "Optimal Portfolio Insurance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 16(3), pages 279-300, September.
    7. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    8. Silvana M. Pesenti & Steven Vanduffel, 2023. "Optimal Transport Divergences induced by Scoring Functions," Papers 2311.12183, arXiv.org, revised Apr 2024.
    9. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    10. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    11. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    12. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    13. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    14. Ioana Popescu, 2007. "Robust Mean-Covariance Solutions for Stochastic Optimization," Operations Research, INFORMS, vol. 55(1), pages 98-112, February.
    15. Fangda Liu & Tiantian Mao & Ruodu Wang & Linxiao Wei, 2022. "Inf-Convolution, Optimal Allocations, and Model Uncertainty for Tail Risk Measures," Mathematics of Operations Research, INFORMS, vol. 47(3), pages 2494-2519, August.
    16. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    17. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    18. Shao, Hui & Zhang, Zhe George, 2023. "Distortion risk measure under parametric ambiguity," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1159-1172.
    19. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    20. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    21. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    22. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    23. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    24. Daniel G. Goldstein & Eric J. Johnson & William F. Sharpe, 2008. "Choosing Outcomes versus Choosing Products: Consumer-Focused Retirement Investment Advice," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 35(3), pages 440-456, August.
    25. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    26. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    27. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuting Su & Taizhong Hu & Zhenfeng Zou, 2025. "Extreme-case Range Value-at-Risk under Increasing Failure Rate," Papers 2506.23073, arXiv.org.
    2. Mengshuo Zhao & Narayanaswamy Balakrishnan & Chuancun Yin & Hui Shao, 2024. "Extremal cases of distortion risk measures with partial information," Papers 2404.13637, arXiv.org, revised Dec 2025.
    3. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    4. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org, revised May 2025.
    5. Baishuai Zuo & Chuancun Yin, 2025. "Analyzing distortion riskmetrics and weighted entropy for unimodal and symmetric distributions under partial information constraints," Papers 2504.19725, arXiv.org, revised Nov 2025.
    6. Baishuai Zuo & Chuancun Yin, 2024. "Worst-cases of distortion riskmetrics and weighted entropy with partial information," Papers 2405.19075, arXiv.org.
    7. Xiangyu Han & Yijun Hu & Ran Wang & Linxiao Wei, 2025. "On data-driven robust distortion risk measures for non-negative risks with partial information," Papers 2508.10682, arXiv.org.
    8. Mengshuo Zhao & Chuancun Yin, 2024. "Best- and worst-case Scenarios for GlueVaR distortion risk measure with Incomplete information," Papers 2409.19902, arXiv.org.
    9. Zuo, Baishuai & Yin, Chuancun, 2025. "Worst-case distortion riskmetrics and weighted entropy with partial information," European Journal of Operational Research, Elsevier, vol. 321(2), pages 476-492.
    10. Brandon Tam & Silvana M. Pesenti, 2025. "Bounds for Distributionally Robust Optimization Problems," Papers 2504.06381, arXiv.org, revised Jan 2026.
    11. Ruodu Wang & Qinyu Wu, 2025. "Probabilistic risk aversion for generalized rank-dependent functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 79(3), pages 1055-1082, May.
    12. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    13. Felix-Benedikt Liebrich & Ruodu Wang, 2025. "Eliciting reference measures of law-invariant functionals," Papers 2507.13763, arXiv.org.
    14. Xia Han & Peng Liu, 2024. "Robust Lambda-quantiles and extremal distributions," Papers 2406.13539, arXiv.org, revised May 2025.
    15. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    16. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Risk sharing, measuring variability, and distortion riskmetrics," Papers 2302.04034, arXiv.org, revised Sep 2025.
    17. Mohammed Abdellaoui & Horst Zank, 2023. "Source and rank-dependent utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(4), pages 949-981, May.
    18. Zvi Safra & Uzi Segal, 2005. "Are Universal Preferences Possible? Calibration Results for Non-Expected Utility Theories," Boston College Working Papers in Economics 633, Boston College Department of Economics.
    19. Peng Liu & Tiantian Mao & Ruodu Wang, 2024. "Quantiles under ambiguity and risk sharing," Papers 2412.19546, arXiv.org.
    20. Shao, Hui & Zhang, Zhe George, 2023. "Distortion risk measure under parametric ambiguity," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1159-1172.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.08662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.