IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.01157.html
   My bibliography  Save this paper

From Best Responses to Learning: Investment Efficiency in Dynamic Environment

Author

Listed:
  • Ce Li
  • Qianfan Zhang
  • Weiqiang Zheng

Abstract

We study the welfare of a mechanism in a dynamic environment where a learning investor can make a costly investment to change her value. In many real-world problems, the common assumption that the investor always makes the best responses, i.e., choosing her utility-maximizing investment option, is unrealistic due to incomplete information in a dynamically evolving environment. To address this, we consider an investor who uses a no-regret online learning algorithm to adaptively select investments through repeated interactions with the environment. We analyze how the welfare guarantees of approximation allocation algorithms extend from static to dynamic settings when the investor learns rather than best-responds, by studying the approximation ratio for optimal welfare as a measurement of an algorithm's performance against different benchmarks in the dynamic learning environment. First, we show that the approximation ratio in the static environment remains unchanged in the dynamic environment against the best-in-hindsight benchmark. Second, we provide tight characterizations of the approximation upper and lower bounds relative to a stronger time-varying benchmark. Bridging mechanism design with online learning theory, our work shows how robust welfare guarantees can be maintained even when an agent cannot make best responses but learns their investment strategies in complex, uncertain environments.

Suggested Citation

  • Ce Li & Qianfan Zhang & Weiqiang Zheng, 2025. "From Best Responses to Learning: Investment Efficiency in Dynamic Environment," Papers 2511.01157, arXiv.org.
  • Handle: RePEc:arx:papers:2511.01157
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.01157
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.01157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.