IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.00764.html

Further Developments on Stochastic Dominance for Different Classes of Infinite-mean Distributions

Author

Listed:
  • Keyi Zeng
  • Zhenfeng Zou
  • Yuting Su
  • Taizhong Hu

Abstract

In recent years, stochastic dominance for independent and identically distributed (iid) infinite-mean random variables has received considerable attention. The literature has identified several classes of distributions of nonnegative random variables that encompass many common heavy-tailed distributions. A key result demonstrates that the weighted sum of iid random variables from these classes is stochastically larger than any individual random variable in the sense of the first-order stochastic dominance. This paper systematically investigates the properties and inclusion relationships among these distribution classes, and extends some existing results to more practical scenarios. Furthermore, we analyze the case where each random variable follows a compound binomial distribution, establishing necessary and sufficient conditions for the preservation of the aforementioned stochastic dominance relation.

Suggested Citation

  • Keyi Zeng & Zhenfeng Zou & Yuting Su & Taizhong Hu, 2025. "Further Developments on Stochastic Dominance for Different Classes of Infinite-mean Distributions," Papers 2511.00764, arXiv.org.
  • Handle: RePEc:arx:papers:2511.00764
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.00764
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuyu Chen & Seva Shneer, 2024. "Risk aggregation and stochastic dominance for a class of heavy-tailed distributions," Papers 2408.15033, arXiv.org, revised May 2025.
    2. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    3. Yuri Imamura & Takashi Kato, 2025. "A Note on Subadditivity of Value at Risks (VaRs): A New Connection to Comonotonicity," Papers 2509.12558, arXiv.org, revised Oct 2025.
    4. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2025. "Technical Note—An Unexpected Stochastic Dominance: Pareto Distributions, Dependence, and Diversification," Operations Research, INFORMS, vol. 73(3), pages 1336-1344, May.
    5. L'eonard Vincent, 2025. "Diversification and Stochastic Dominance: When All Eggs Are Better Put in One Basket," Papers 2507.16265, arXiv.org, revised Aug 2025.
    6. Yuyu Chen & Taizhong Hu & Ruodu Wang & Zhenfeng Zou, 2024. "Diversification for infinite-mean Pareto models without risk aversion," Papers 2404.18467, arXiv.org, revised Feb 2025.
    7. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    8. Yuyu Chen & Taizhong Hu & Seva Shneer & Zhenfeng Zou, 2025. "Stochastic dominance for linear combinations of infinite-mean risks," Papers 2505.01739, arXiv.org.
    9. Chen, Yuyu & Hu, Taizhong & Wang, Ruodu & Zou, Zhenfeng, 2025. "Diversification for infinite-mean Pareto models without risk aversion," European Journal of Operational Research, Elsevier, vol. 323(1), pages 341-350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    2. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    3. Zheng, Yanting & Yang, Jingping & Huang, Jianhua Z., 2011. "Approximation of bivariate copulas by patched bivariate Fréchet copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 246-256, March.
    4. Antonella Campana, 2007. "On Tail Value-at-Risk for sums of non-independent random variables with a generalized Pareto distribution," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 169-180, December.
    5. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    6. Huang, H. & Milevsky, M. A. & Wang, J., 2004. "Ruined moments in your life: how good are the approximations?," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 421-447, June.
    7. Denuit, Michel & Hieber, Peter & Robert, Christian Y., 2021. "Mortality credits within large survivor funds," LIDAM Discussion Papers ISBA 2021038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    9. Denuit, Michel & Dhaene, Jan & Ghossoub, Mario & Robert, Christian Y., 2025. "Comonotonicity and Pareto optimality, with application to collaborative insurance," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 1-16.
    10. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    11. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    12. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    13. Barczy, Mátyás & K. Nedényi, Fanni & Sütő, László, 2023. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 107-128.
    14. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, vol. 5(1), pages 1-22, February.
    15. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    16. Manesh, Sirous Fathi & Khaledi, Baha-Eldin & Dhaene, Jan, 2016. "Optimal allocation of policy deductibles for exchangeable risks," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 87-92.
    17. Sinem Bas & Philippe Bich & Alain Chateauneuf, 2021. "Multidimensional inequalities and generalized quantile functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 375-409, March.
    18. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.
    19. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    20. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.00764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.