IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.26957.html
   My bibliography  Save this paper

Predicting Household Water Consumption Using Satellite and Street View Images in Two Indian Cities

Author

Listed:
  • Qiao Wang
  • Joseph George

Abstract

Monitoring household water use in rapidly urbanizing regions is hampered by costly, time-intensive enumeration methods and surveys. We investigate whether publicly available imagery-satellite tiles, Google Street View (GSV) segmentation-and simple geospatial covariates (nightlight intensity, population density) can be utilized to predict household water consumption in Hubballi-Dharwad, India. We compare four approaches: survey features (benchmark), CNN embeddings (satellite, GSV, combined), and GSV semantic maps with auxiliary data. Under an ordinal classification framework, GSV segmentation plus remote-sensing covariates achieves 0.55 accuracy for water use, approaching survey-based models (0.59 accuracy). Error analysis shows high precision at extremes of the household water consumption distribution, but confusion among middle classes is due to overlapping visual proxies. We also compare and contrast our estimates for household water consumption to that of household subjective income. Our findings demonstrate that open-access imagery, coupled with minimal geospatial data, offers a promising alternative to obtaining reliable household water consumption estimates using surveys in urban analytics.

Suggested Citation

  • Qiao Wang & Joseph George, 2025. "Predicting Household Water Consumption Using Satellite and Street View Images in Two Indian Cities," Papers 2510.26957, arXiv.org.
  • Handle: RePEc:arx:papers:2510.26957
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.26957
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.26957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.