IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.24388.html
   My bibliography  Save this paper

A Characterization of Egalitarian and Proportional Sharing Principles: An Efficient Extension Operator Approach

Author

Listed:
  • Yukihiko Funaki
  • Yukio Koriyama
  • Satoshi Nakada

Abstract

Some well-known solutions for cooperative games with transferable utility (TU-games), such as the Banzhaf value, the Myerson value, and the Aumann-Dreze value, fail to satisfy efficiency, although they possess other desirable properties. This paper proposes a new approach to restore efficiency by extending any underlying solution to an efficient one, through what we call an efficient extension operator. We consider novel axioms for an efficient extension operator and characterize the egalitarian surplus sharing method and the proportional sharing method in a unified manner. These results can be considered as new justifications for the f-ESS values and the f-PS values introduced by Funaki and Koriyama (2025), which are generalizations of the equal surplus sharing value and the proportional sharing value. Our results offer an additional rationale for the values with an arbitrary underlying solution. As applications, we develop an efficient-fair extension of the solutions for the TU-games with communication networks and its variant for TU-games with coalition structures.

Suggested Citation

  • Yukihiko Funaki & Yukio Koriyama & Satoshi Nakada, 2025. "A Characterization of Egalitarian and Proportional Sharing Principles: An Efficient Extension Operator Approach," Papers 2510.24388, arXiv.org.
  • Handle: RePEc:arx:papers:2510.24388
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.24388
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.24388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.