IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.11844.html
   My bibliography  Save this paper

ProteuS: A Generative Approach for Simulating Concept Drift in Financial Markets

Author

Listed:
  • Andr'es L. Su'arez-Cetrulo
  • Alejandro Cervantes
  • David Quintana

Abstract

Financial markets are complex, non-stationary systems where the underlying data distributions can shift over time, a phenomenon known as regime changes, as well as concept drift in the machine learning literature. These shifts, often triggered by major economic events, pose a significant challenge for traditional statistical and machine learning models. A fundamental problem in developing and validating adaptive algorithms is the lack of a ground truth in real-world financial data, making it difficult to evaluate a model's ability to detect and recover from these drifts. This paper addresses this challenge by introducing a novel framework, named ProteuS, for generating semi-synthetic financial time series with pre-defined structural breaks. Our methodology involves fitting ARMA-GARCH models to real-world ETF data to capture distinct market regimes, and then simulating realistic, gradual, and abrupt transitions between them. The resulting datasets, which include a comprehensive set of technical indicators, provide a controlled environment with a known ground truth of regime changes. An analysis of the generated data confirms the complexity of the task, revealing significant overlap between the different market states. We aim to provide the research community with a tool for the rigorous evaluation of concept drift detection and adaptation mechanisms, paving the way for more robust financial forecasting models.

Suggested Citation

  • Andr'es L. Su'arez-Cetrulo & Alejandro Cervantes & David Quintana, 2025. "ProteuS: A Generative Approach for Simulating Concept Drift in Financial Markets," Papers 2509.11844, arXiv.org.
  • Handle: RePEc:arx:papers:2509.11844
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.11844
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.11844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.