IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.11844.html
   My bibliography  Save this paper

ProteuS: A Generative Approach for Simulating Concept Drift in Financial Markets

Author

Listed:
  • Andr'es L. Su'arez-Cetrulo
  • Alejandro Cervantes
  • David Quintana

Abstract

Financial markets are complex, non-stationary systems where the underlying data distributions can shift over time, a phenomenon known as regime changes, as well as concept drift in the machine learning literature. These shifts, often triggered by major economic events, pose a significant challenge for traditional statistical and machine learning models. A fundamental problem in developing and validating adaptive algorithms is the lack of a ground truth in real-world financial data, making it difficult to evaluate a model's ability to detect and recover from these drifts. This paper addresses this challenge by introducing a novel framework, named ProteuS, for generating semi-synthetic financial time series with pre-defined structural breaks. Our methodology involves fitting ARMA-GARCH models to real-world ETF data to capture distinct market regimes, and then simulating realistic, gradual, and abrupt transitions between them. The resulting datasets, which include a comprehensive set of technical indicators, provide a controlled environment with a known ground truth of regime changes. An analysis of the generated data confirms the complexity of the task, revealing significant overlap between the different market states. We aim to provide the research community with a tool for the rigorous evaluation of concept drift detection and adaptation mechanisms, paving the way for more robust financial forecasting models.

Suggested Citation

  • Andr'es L. Su'arez-Cetrulo & Alejandro Cervantes & David Quintana, 2025. "ProteuS: A Generative Approach for Simulating Concept Drift in Financial Markets," Papers 2509.11844, arXiv.org.
  • Handle: RePEc:arx:papers:2509.11844
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.11844
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baek, Seungho & Mohanty, Sunil K. & Glambosky, Mina, 2020. "COVID-19 and stock market volatility: An industry level analysis," Finance Research Letters, Elsevier, vol. 37(C).
    2. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    3. Mark Kritzman & Sébastien Page & David Turkington, 2012. "Regime Shifts: Implications for Dynamic Strategies (corrected)," Financial Analysts Journal, Taylor & Francis Journals, vol. 68(3), pages 22-39, May.
    4. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    5. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    6. Massimo Guidolin & Allan Timmermann, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22, January.
    7. Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    10. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    11. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    2. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    3. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    4. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Advances in Econometrics, in: Missing Data Methods: Time-Series Methods and Applications, pages 1-86, Emerald Group Publishing Limited.
    5. Haase, Felix & Neuenkirch, Matthias, 2023. "Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US," International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
    6. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    7. Giampaoli, Noemi & Cucculelli, Marco & Sullo, Valerio, 2024. "Business and financial cycle across regimes: Does financial stress matter?," International Review of Economics & Finance, Elsevier, vol. 96(PB).
    8. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    9. Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Downside risk reduction using regime-switching signals: a statistical jump model approach," Journal of Asset Management, Palgrave Macmillan, vol. 25(5), pages 493-507, September.
    10. Daniel de Almeida & Ana-Maria Fuertes & Luiz Koodi Hotta, 2025. "Out-of-Sample Predictability of the Equity Risk Premium," Mathematics, MDPI, vol. 13(2), pages 1-23, January.
    11. Jeremy Eng-Tuck Cheah & Thong Dao & Haozhe Su, 2024. "Measuring cryptocurrency moment convergence using distance analysis," Annals of Operations Research, Springer, vol. 332(1), pages 533-577, January.
    12. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    13. Yang, Lu & Hamori, Shigeyuki, 2014. "Spillover effect of US monetary policy to ASEAN stock markets: Evidence from Indonesia, Singapore, and Thailand," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 145-155.
    14. Marc Berninger, 2024. "Changes in the Perception of Error Announcements from the German Two-Tier Enforcement," Schmalenbach Journal of Business Research, Springer, vol. 76(4), pages 613-639, December.
    15. dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
    16. Li, Da-Ye & Nishimura, Yusaku & Men, Ming, 2014. "Fractal markets: Liquidity and investors on different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 144-151.
    17. Yousefi, Hamed & Najand, Mohammad, 2022. "Geographical diversification using ETFs: Multinational evidence from COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    18. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    19. Luo, Shikong & Yan, Xinyan & Yang, Haoyi, 2021. "Let’s take a smooth break: Stock return predictability revisited," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 300-314.
    20. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.11844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.