IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.10461.html
   My bibliography  Save this paper

Momentum-integrated Multi-task Stock Recommendation with Converge-based Optimization

Author

Listed:
  • Hao Wang
  • Jingshu Peng
  • Yanyan Shen
  • Xujia Li
  • Lei Chen

Abstract

Stock recommendation is critical in Fintech applications, which use price series and alternative information to estimate future stock performance. Although deep learning models are prevalent in stock recommendation systems, traditional time-series forecasting training often fails to capture stock trends and rankings simultaneously, which are essential consideration factors for investors. To tackle this issue, we introduce a Multi-Task Learning (MTL) framework for stock recommendation, \textbf{M}omentum-\textbf{i}ntegrated \textbf{M}ulti-task \textbf{Stoc}k \textbf{R}ecommendation with Converge-based Optimization (\textbf{MiM-StocR}). To improve the model's ability to capture short-term trends, we novelly invoke a momentum line indicator in model training. To prioritize top-performing stocks and optimize investment allocation, we propose a list-wise ranking loss function called Adaptive-k ApproxNDCG. Moreover, due to the volatility and uncertainty of the stock market, existing MTL frameworks face overfitting issues when applied to stock time series. To mitigate this issue, we introduce the Converge-based Quad-Balancing (CQB) method. We conducted extensive experiments on three stock benchmarks: SEE50, CSI 100, and CSI 300. MiM-StocR outperforms state-of-the-art MTL baselines across both ranking and profitable evaluations.

Suggested Citation

  • Hao Wang & Jingshu Peng & Yanyan Shen & Xujia Li & Lei Chen, 2025. "Momentum-integrated Multi-task Stock Recommendation with Converge-based Optimization," Papers 2509.10461, arXiv.org.
  • Handle: RePEc:arx:papers:2509.10461
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.10461
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.10461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.