IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.09585.html
   My bibliography  Save this paper

Causal PDE-Control Models: A Structural Framework for Dynamic Portfolio Optimization

Author

Listed:
  • Alejandro Rodriguez Dominguez

Abstract

Classical portfolio models collapse under structural breaks, while modern machine-learning allocators adapt flexibly but often at the cost of transparency and interpretability. This paper introduces Causal PDE-Control Models (CPCMs), a unifying framework that integrates causal inference, nonlinear filtering, and forward-backward partial differential equations for dynamic portfolio optimization. The framework delivers three theoretical advances: (i) the existence of conditional risk-neutral measures under evolving information sets; (ii) a projection-divergence duality that quantifies the stability cost of departing from the causal driver manifold; and (iii) causal completeness, establishing that a finite driver span can capture all systematic premia. Classical methods such as Markowitz, CAPM, and Black-Litterman appear as degenerate cases, while reinforcement learning and deep-hedging policies emerge as unconstrained, symmetry-breaking approximations. Empirically, CPCM solvers implemented with physics-informed neural networks achieve higher Sharpe ratios, lower turnover, and more persistent premia than both econometric and machine-learning benchmarks, using a global equity panel with more than 300 candidate drivers. By reframing portfolio optimization around structural causality and PDE control, CPCMs provide a rigorous, interpretable, and computationally tractable foundation for robust asset allocation under nonstationary conditions.

Suggested Citation

  • Alejandro Rodriguez Dominguez, 2025. "Causal PDE-Control Models: A Structural Framework for Dynamic Portfolio Optimization," Papers 2509.09585, arXiv.org.
  • Handle: RePEc:arx:papers:2509.09585
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.09585
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.09585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.