IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.08183.html
   My bibliography  Save this paper

Chaotic Bayesian Inference: Strange Attractors as Risk Models for Black Swan Events

Author

Listed:
  • Crystal Rust

Abstract

We introduce a new risk modeling framework where chaotic attractors shape the geometry of Bayesian inference. By combining heavy-tailed priors with Lorenz and Rossler dynamics, the models naturally generate volatility clustering, fat tails, and extreme events. We compare two complementary approaches: Model A, which emphasizes geometric stability, and Model B, which highlights rare bursts using Fibonacci diagnostics. Together, they provide a dual perspective for systemic risk analysis, linking Black Swan theory to practical tools for stress testing and volatility monitoring.

Suggested Citation

  • Crystal Rust, 2025. "Chaotic Bayesian Inference: Strange Attractors as Risk Models for Black Swan Events," Papers 2509.08183, arXiv.org.
  • Handle: RePEc:arx:papers:2509.08183
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.08183
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baumol, William J & Benhabib, Jess, 1989. "Chaos: Significance, Mechanism, and Economic Applications," Journal of Economic Perspectives, American Economic Association, vol. 3(1), pages 77-105, Winter.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Isabel Bezerra Cavalcanti, 2003. "Instabilidade e Não-Linearidades nos Mercados Financeiros," Anais do XXXI Encontro Nacional de Economia [Proceedings of the 31st Brazilian Economics Meeting] c52, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    2. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Barnett, William A. & Serletis, Apostolos & Serletis, Demitre, 2015. "Nonlinear And Complex Dynamics In Economics," Macroeconomic Dynamics, Cambridge University Press, vol. 19(8), pages 1749-1779, December.
    4. An-Sing Chen, 1997. "The square compass rose: the evidence from Taiwan," Journal of Multinational Financial Management, Elsevier, vol. 7(2), pages 127-144, June.
    5. Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
    6. Chatrath, Arjun & Adrangi, Bahram & Dhanda, Kanwalroop Kathy, 2002. "Are commodity prices chaotic?," Agricultural Economics, Blackwell, vol. 27(2), pages 123-137, August.
    7. Li-Xin Wang, 2014. "Dynamical Models of Stock Prices Based on Technical Trading Rules Part II: Analysis of the Models," Papers 1401.1891, arXiv.org, revised Feb 2016.
    8. Peter Kugler, 1990. "Sind Wechselkursfluktuationen zufällig oder chaotisch?," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 126(II), pages 113-129, June.
    9. Baek, Khung G. & Brock, William A., 1989. "A Nonparametric Test For Independence Of A Multivariate Time Series," ISU General Staff Papers 198912010800001205, Iowa State University, Department of Economics.
    10. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    11. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    12. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    13. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    14. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    16. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.
    17. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    18. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    19. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    20. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.08183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.