IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.13174.html
   My bibliography  Save this paper

AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining

Author

Listed:
  • Hongjun Ding
  • Binqi Chen
  • Jinsheng Huang
  • Taian Guo
  • Zhengyang Mao
  • Guoyi Shao
  • Lutong Zou
  • Luchen Liu
  • Ming Zhang

Abstract

Formula alpha mining, which generates predictive signals from financial data, is critical for quantitative investment. Although various algorithmic approaches-such as genetic programming, reinforcement learning, and large language models-have significantly expanded the capacity for alpha discovery, systematic evaluation remains a key challenge. Existing evaluation metrics predominantly include backtesting and correlation-based measures. Backtesting is computationally intensive, inherently sequential, and sensitive to specific strategy parameters. Correlation-based metrics, though efficient, assess only predictive ability and overlook other crucial properties such as temporal stability, robustness, diversity, and interpretability. Additionally, the closed-source nature of most existing alpha mining models hinders reproducibility and slows progress in this field. To address these issues, we propose AlphaEval, a unified, parallelizable, and backtest-free evaluation framework for automated alpha mining models. AlphaEval assesses the overall quality of generated alphas along five complementary dimensions: predictive power, stability, robustness to market perturbations, financial logic, and diversity. Extensive experiments across representative alpha mining algorithms demonstrate that AlphaEval achieves evaluation consistency comparable to comprehensive backtesting, while providing more comprehensive insights and higher efficiency. Furthermore, AlphaEval effectively identifies superior alphas compared to traditional single-metric screening approaches. All implementations and evaluation tools are open-sourced to promote reproducibility and community engagement.

Suggested Citation

  • Hongjun Ding & Binqi Chen & Jinsheng Huang & Taian Guo & Zhengyang Mao & Guoyi Shao & Lutong Zou & Luchen Liu & Ming Zhang, 2025. "AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining," Papers 2508.13174, arXiv.org.
  • Handle: RePEc:arx:papers:2508.13174
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.13174
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tianping Zhang & Yuanqi Li & Yifei Jin & Jian Li, 2020. "AutoAlpha: an Efficient Hierarchical Evolutionary Algorithm for Mining Alpha Factors in Quantitative Investment," Papers 2002.08245, arXiv.org, revised Apr 2020.
    2. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    3. Feng Xu & Yan Yin & Xinyu Zhang & Tianyuan Liu & Shengyi Jiang & Zongzhang Zhang, 2024. "$\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning," Papers 2406.16505, arXiv.org, revised Jun 2024.
    4. Saizhuo Wang & Hao Kong & Jiadong Guo & Fengrui Hua & Yiyan Qi & Wanyun Zhou & Jiahao Zheng & Xinyu Wang & Lionel M. Ni & Jian Guo, 2025. "QuantBench: Benchmarking AI Methods for Quantitative Investment," Papers 2504.18600, arXiv.org.
    5. Hariom Tatsat & Ariye Shater, 2025. "Beyond the Black Box: Interpretability of LLMs in Finance," Papers 2505.24650, arXiv.org.
    6. Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
    7. Zura Kakushadze, 2016. "101 Formulaic Alphas," Papers 1601.00991, arXiv.org, revised Mar 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weizhe Ren & Yichen Qin & Yang Li, 2024. "Alpha Mining and Enhancing via Warm Start Genetic Programming for Quantitative Investment," Papers 2412.00896, arXiv.org.
    2. Shuo Yu & Hongyan Xue & Xiang Ao & Feiyang Pan & Jia He & Dandan Tu & Qing He, 2023. "Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning," Papers 2306.12964, arXiv.org.
    3. Quechen Yang, 2024. "Blending Ensemble for Classification with Genetic-algorithm generated Alpha factors and Sentiments (GAS)," Papers 2411.03035, arXiv.org.
    4. Yongli Li & Tianchen Wang & Baiqing Sun & Chao Liu, 2022. "Detecting the lead–lag effect in stock markets: definition, patterns, and investment strategies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-36, December.
    5. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    6. Haochen Luo & Yuan Zhang & Chen Liu, 2025. "EFS: Evolutionary Factor Searching for Sparse Portfolio Optimization Using Large Language Models," Papers 2507.17211, arXiv.org.
    7. Hao Shi & Weili Song & Xinting Zhang & Jiahe Shi & Cuicui Luo & Xiang Ao & Hamid Arian & Luis Seco, 2024. "AlphaForge: A Framework to Mine and Dynamically Combine Formulaic Alpha Factors," Papers 2406.18394, arXiv.org, revised Dec 2024.
    8. Bokai Cao & Saizhuo Wang & Xinyi Lin & Xiaojun Wu & Haohan Zhang & Lionel M. Ni & Jian Guo, 2025. "From Deep Learning to LLMs: A survey of AI in Quantitative Investment," Papers 2503.21422, arXiv.org.
    9. Clarke, Nicholas, 2022. "It's just a matter of time: Abnormal returns after firms stop repurchasing shares," Finance Research Letters, Elsevier, vol. 49(C).
    10. Croce, M.M. & Nguyen, Thien T. & Raymond, S. & Schmid, L., 2019. "Government debt and the returns to innovation," Journal of Financial Economics, Elsevier, vol. 132(3), pages 205-225.
    11. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    12. Eun, Cheol & Lee, Kyuseok & Wei, Fengrong, 2023. "Dual role of the country factors in international asset pricing: The local factors and proxies for the global factors," International Review of Financial Analysis, Elsevier, vol. 89(C).
    13. Giovanni Calice & Levent Kutlu & Ming Zeng, 2021. "Understanding US firm efficiency and its asset pricing implications," Empirical Economics, Springer, vol. 60(2), pages 803-827, February.
    14. Bo-Hung Chiou & Shen-Ho Chang, 2020. "Influence of Investment Efficiency by Managers and Accounting Conservatism on Idiosyncratic Risks to Investors," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 10(1), pages 1-8.
    15. Klaus Grobys & James W. Kolari & Jere Rutanen, 2022. "Factor momentum, option-implied volatility scaling, and investor sentiment," Journal of Asset Management, Palgrave Macmillan, vol. 23(2), pages 138-155, March.
    16. Eksi, Ozan & Tas, Bedri Kamil Onur, 2017. "Unconventional monetary policy and the stock market’s reaction to Federal Reserve policy actions," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 136-147.
    17. Siddiqi, Hammad, 2015. "Anchoring and Adjustment Heuristic: A Unified Explanation for Equity Puzzles," MPRA Paper 68729, University Library of Munich, Germany.
    18. Hege, Ulrich & Pouget, Sébastien & Zhang, Yifei, 2023. "Climate Patents and Financial Markets," TSE Working Papers 23-1400, Toulouse School of Economics (TSE), revised Dec 2024.
    19. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2020. "The information content of funds from operations and net income in real estate investment trusts," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    20. Reveley Callum & Shanaev Savva & Bin Yu & Panta Humnath & Ghimire Binam, 2023. "Analyst herding—whether, why, and when? Two new tests for herding detection in target forecast prices," Economics and Business Review, Sciendo, vol. 9(4), pages 25-55, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.13174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.