IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.19603.html
   My bibliography  Save this paper

Uniform Critical Values for Likelihood Ratio Tests in Boundary Problems

Author

Listed:
  • Giuseppe Cavaliere
  • Adam McCloskey
  • Rasmus S. Pedersen
  • Anders Rahbek

Abstract

Limit distributions of likelihood ratio statistics are well-known to be discontinuous in the presence of nuisance parameters at the boundary of the parameter space, which lead to size distortions when standard critical values are used for testing. In this paper, we propose a new and simple way of constructing critical values that yields uniformly correct asymptotic size, regardless of whether nuisance parameters are at, near or far from the boundary of the parameter space. Importantly, the proposed critical values are trivial to compute and at the same time provide powerful tests in most settings. In comparison to existing size-correction methods, the new approach exploits the monotonicity of the two components of the limiting distribution of the likelihood ratio statistic, in conjunction with rectangular confidence sets for the nuisance parameters, to gain computational tractability. Uniform validity is established for likelihood ratio tests based on the new critical values, and we provide illustrations of their construction in two key examples: (i) testing a coefficient of interest in the classical linear regression model with non-negativity constraints on control coefficients, and, (ii) testing for the presence of exogenous variables in autoregressive conditional heteroskedastic models (ARCH) with exogenous regressors. Simulations confirm that the tests have desirable size and power properties. A brief empirical illustration demonstrates the usefulness of our proposed test in relation to testing for spill-overs and ARCH effects.

Suggested Citation

  • Giuseppe Cavaliere & Adam McCloskey & Rasmus S. Pedersen & Anders Rahbek, 2025. "Uniform Critical Values for Likelihood Ratio Tests in Boundary Problems," Papers 2507.19603, arXiv.org.
  • Handle: RePEc:arx:papers:2507.19603
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.19603
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    2. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(2), pages 426-468, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    2. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(2), pages 287-333, April.
    3. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    4. Tiemen M. Woutersen & John Ham, 2013. "Calculating confidence intervals for continuous and discontinuous functions of parameters," CeMMAP working papers 23/13, Institute for Fiscal Studies.
    5. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    6. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    7. Philipp Ketz & Adam McCloskey, 2025. "Short and Simple Confidence Intervals When the Directions of Some Effects are Known," The Review of Economics and Statistics, MIT Press, vol. 107(3), pages 820-834, May.
    8. Jean-Marie Dufour & Joachim Wilde, 2018. "Weak identification in probit models with endogenous covariates," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 611-631, October.
    9. Qihui Chen & Zheng Fang, 2019. "Inference on Functionals under First Order Degeneracy," Papers 1901.04861, arXiv.org.
    10. Kadilli, Anjeza & Krishnakumar, Jaya, 2022. "Smooth Transition Simultaneous Equation Models," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    11. Chunlin Wang & Paul Marriott & Pengfei Li, 2022. "A note on the coverage behaviour of bootstrap percentile confidence intervals for constrained parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 809-831, October.
    12. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    13. Hassler, Uwe, 2010. "Testing regression coefficients after model selection through sign restrictions," Economics Letters, Elsevier, vol. 107(2), pages 220-223, May.
    14. Audrino, Francesco & Camponovo, Lorenzo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Economics Working Paper Series 1327, University of St. Gallen, School of Economics and Political Science.
    15. C de Chaisemartin & X D’HaultfŒuille, 2018. "Fuzzy Differences-in-Differences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 999-1028.
    16. Ketz, Philipp, 2019. "On asymptotic size distortions in the random coefficients logit model," Journal of Econometrics, Elsevier, vol. 212(2), pages 413-432.
    17. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    18. Khalaf, Lynda & Urga, Giovanni, 2014. "Identification robust inference in cointegrating regressions," Journal of Econometrics, Elsevier, vol. 182(2), pages 385-396.
    19. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    20. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.19603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.