IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.09494.html
   My bibliography  Save this paper

An Algorithm for Identifying Interpretable Subgroups With Elevated Treatment Effects

Author

Listed:
  • Albert Chiu

Abstract

We introduce an algorithm for identifying interpretable subgroups with elevated treatment effects, given an estimate of individual or conditional average treatment effects (CATE). Subgroups are characterized by ``rule sets'' -- easy-to-understand statements of the form (Condition A AND Condition B) OR (Condition C) -- which can capture high-order interactions while retaining interpretability. Our method complements existing approaches for estimating the CATE, which often produce high dimensional and uninterpretable results, by summarizing and extracting critical information from fitted models to aid decision making, policy implementation, and scientific understanding. We propose an objective function that trades-off subgroup size and effect size, and varying the hyperparameter that controls this trade-off results in a ``frontier'' of Pareto optimal rule sets, none of which dominates the others across all criteria. Valid inference is achievable through sample splitting. We demonstrate the utility and limitations of our method using simulated and empirical examples.

Suggested Citation

  • Albert Chiu, 2025. "An Algorithm for Identifying Interpretable Subgroups With Elevated Treatment Effects," Papers 2507.09494, arXiv.org.
  • Handle: RePEc:arx:papers:2507.09494
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.09494
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.