IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.09494.html
   My bibliography  Save this paper

An Algorithm for Identifying Interpretable Subgroups With Elevated Treatment Effects

Author

Listed:
  • Albert Chiu

Abstract

We introduce an algorithm for identifying interpretable subgroups with elevated treatment effects, given an estimate of individual or conditional average treatment effects (CATE). Subgroups are characterized by ``rule sets'' -- easy-to-understand statements of the form (Condition A AND Condition B) OR (Condition C) -- which can capture high-order interactions while retaining interpretability. Our method complements existing approaches for estimating the CATE, which often produce high dimensional and uninterpretable results, by summarizing and extracting critical information from fitted models to aid decision making, policy implementation, and scientific understanding. We propose an objective function that trades-off subgroup size and effect size, and varying the hyperparameter that controls this trade-off results in a ``frontier'' of Pareto optimal rule sets, none of which dominates the others across all criteria. Valid inference is achievable through sample splitting. We demonstrate the utility and limitations of our method using simulated and empirical examples.

Suggested Citation

  • Albert Chiu, 2025. "An Algorithm for Identifying Interpretable Subgroups With Elevated Treatment Effects," Papers 2507.09494, arXiv.org.
  • Handle: RePEc:arx:papers:2507.09494
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.09494
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    2. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Grimmer, Justin & Messing, Solomon & Westwood, Sean J., 2017. "Estimating Heterogeneous Treatment Effects and the Effects of Heterogeneous Treatments with Ensemble Methods," Political Analysis, Cambridge University Press, vol. 25(4), pages 413-434, October.
    5. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    6. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    7. X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Rehill & Nicholas Biddle, 2025. "Policy Learning for Many Outcomes of Interest: Combining Optimal Policy Trees with Multi-objective Bayesian Optimisation," Computational Economics, Springer;Society for Computational Economics, vol. 66(2), pages 971-1001, August.
    2. Athey, Susan & Keleher, Niall & Spiess, Jann, 2025. "Machine learning who to nudge: Causal vs predictive targeting in a field experiment on student financial aid renewal," Journal of Econometrics, Elsevier, vol. 249(PC).
    3. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    4. Ta-Wei Huang & Eva Ascarza, 2024. "Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals," Marketing Science, INFORMS, vol. 43(4), pages 863-884, July.
    5. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    6. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," Economics working papers 2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
    7. Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
    8. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
    9. Goller, Daniel & Lechner, Michael & Pongratz, Tamara & Wolff, Joachim, 2025. "Active labor market policies for the long-term unemployed: New evidence from causal machine learning," Labour Economics, Elsevier, vol. 94(C).
    10. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    11. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
    12. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    13. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
    14. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Yanqin Fan & Yuan Qi & Gaoqian Xu, 2025. "Policy Learning with $\alpha$-Expected Welfare," Papers 2505.00256, arXiv.org.
    16. Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
    17. Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
    18. Justin Whitehouse & Morgane Austern & Vasilis Syrgkanis, 2025. "Inference on Optimal Policy Values and Other Irregular Functionals via Smoothing," Papers 2507.11780, arXiv.org.
    19. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Mar 2025.
    20. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.