IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.06266.html
   My bibliography  Save this paper

Machine Learning based Enterprise Financial Audit Framework and High Risk Identification

Author

Listed:
  • Tingyu Yuan
  • Xi Zhang
  • Xuanjing Chen

Abstract

In the face of global economic uncertainty, financial auditing has become essential for regulatory compliance and risk mitigation. Traditional manual auditing methods are increasingly limited by large data volumes, complex business structures, and evolving fraud tactics. This study proposes an AI-driven framework for enterprise financial audits and high-risk identification, leveraging machine learning to improve efficiency and accuracy. Using a dataset from the Big Four accounting firms (EY, PwC, Deloitte, KPMG) from 2020 to 2025, the research examines trends in risk assessment, compliance violations, and fraud detection. The dataset includes key indicators such as audit project counts, high-risk cases, fraud instances, compliance breaches, employee workload, and client satisfaction, capturing both audit behaviors and AI's impact on operations. To build a robust risk prediction model, three algorithms - Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN) - are evaluated. SVM uses hyperplane optimization for complex classification, RF combines decision trees to manage high-dimensional, nonlinear data with resistance to overfitting, and KNN applies distance-based learning for flexible performance. Through hierarchical K-fold cross-validation and evaluation using F1-score, accuracy, and recall, Random Forest achieves the best performance, with an F1-score of 0.9012, excelling in identifying fraud and compliance anomalies. Feature importance analysis reveals audit frequency, past violations, employee workload, and client ratings as key predictors. The study recommends adopting Random Forest as a core model, enhancing features via engineering, and implementing real-time risk monitoring. This research contributes valuable insights into using machine learning for intelligent auditing and risk management in modern enterprises.

Suggested Citation

  • Tingyu Yuan & Xi Zhang & Xuanjing Chen, 2025. "Machine Learning based Enterprise Financial Audit Framework and High Risk Identification," Papers 2507.06266, arXiv.org.
  • Handle: RePEc:arx:papers:2507.06266
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.06266
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.06266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.