IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i10p423-d1247225.html
   My bibliography  Save this article

Forecasting of NIFTY 50 Index Price by Using Backward Elimination with an LSTM Model

Author

Listed:
  • Syed Hasan Jafar

    (School of Business, Woxsen University, Hyderabad 502345, India)

  • Shakeb Akhtar

    (School of Business, Woxsen University, Hyderabad 502345, India)

  • Hani El-Chaarani

    (Faculty of Business Administration, Beirut Arab University, Riad El Solh, Beirut 11072809, Lebanon)

  • Parvez Alam Khan

    (Department of Management and Humanities, University Technology PETRONAS, Seri Iskandar 32610, Malaysia)

  • Ruaa Binsaddig

    (College of Business Administration, University of Business and Technology, 10000 Prishtina, Kosovo)

Abstract

Predicting trends in the stock market is becoming complex and uncertain. In response, various artificial intelligence solutions have emerged. A significant solution for predicting the trends of a stock’s volatile and chaotic nature is drawn from deep learning. The present study’s objective is to compare and predict the closing price of the NIFTY 50 index through two significant deep learning methods—long short-term memory (LSTM) and backward elimination LSTM (BE-LSTM)—using 15 years’ worth of per day data obtained from Bloomberg. This study has considered the variables of date, high, open, low, close volume, as well as the 14-period relative strength index (RSI), to predict the closing price. The results of the comparative study show that backward elimination LSTM performs better than the LSTM model for predicting the NIFTY 50 index price for the next 30 days, with an accuracy of 95%. In conclusion, the proposed model has significantly improved the prediction of the NIFTY 50 index price.

Suggested Citation

  • Syed Hasan Jafar & Shakeb Akhtar & Hani El-Chaarani & Parvez Alam Khan & Ruaa Binsaddig, 2023. "Forecasting of NIFTY 50 Index Price by Using Backward Elimination with an LSTM Model," JRFM, MDPI, vol. 16(10), pages 1-23, September.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:10:p:423-:d:1247225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/10/423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/10/423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
    2. Andreas Maniatopoulos & Alexandros Gazis & Nikolaos Mitianoudis, 2023. "Technical analysis forecasting and evaluation of stock markets: the probabilistic recovery neural network approach," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 25(1), pages 64-100.
    3. Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.
    4. Vanshu Mahajan & Sunil Thakan & Aashish Malik, 2022. "Modeling and Forecasting the Volatility of NIFTY 50 Using GARCH and RNN Models," Economies, MDPI, vol. 10(5), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avi Thaker & Leo H. Chan & Daniel Sonner, 2024. "Forecasting Agriculture Commodity Futures Prices with Convolutional Neural Networks with Application to Wheat Futures," JRFM, MDPI, vol. 17(4), pages 1-15, April.
    2. Moumita Barua & Teerath Kumar & Kislay Raj & Arunabha M. Roy, 2024. "Comparative Analysis of Deep Learning Models for Stock Price Prediction in the Indian Market," FinTech, MDPI, vol. 3(4), pages 1-18, November.
    3. Fazlollah Soleymani & Qiang Ma & Tao Liu, 2025. "Managing the Risk via the Chi-Squared Distribution in VaR and CVaR with the Use in Generalized Autoregressive Conditional Heteroskedasticity Model," Mathematics, MDPI, vol. 13(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin Soon Ku & Jiale Xiong & Yen-Lin Chen & Shing Dhee Cheah & Hoong Cheng Soong & Lip Yee Por, 2023. "Improving Stock Market Predictions: An Equity Forecasting Scanner Using Long Short-Term Memory Method with Dynamic Indicators for Malaysia Stock Market," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    2. Murat Tasci & Hidir Duzkaya, 2025. "Estimation of Working Error of Electricity Meter Using Artificial Neural Network (ANN)," Energies, MDPI, vol. 18(5), pages 1-16, March.
    3. Dezheng Zhang & Jing Li & Yonghong Xie & Aziguli Wulamu, 2023. "Research on performance variations of classifiers with the influence of pre-processing methods for Chinese short text classification," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-22, October.
    4. Caixia Wang, 2023. "Optimization of sports effect evaluation technology from random forest algorithm and elastic network algorithm," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-18, October.
    5. Jin, Ting & Liang, Feiyan & Dong, Xiaoqi & Cao, Xiaojuan, 2023. "Research on land resource management integrated with support vector machine —Based on the perspective of green innovation," Resources Policy, Elsevier, vol. 86(PB).
    6. Aida Nabilah Sadon & Shuhaida Ismail & Azme Khamis & Muhammad Usman Tariq, 2024. "Heteroscedasticity effects as component to future stock market predictions using RNN-based models," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-18, May.
    7. Thiago Conte & Roberto Oliveira, 2024. "Comparative Analysis between Intelligent Machine Committees and Hybrid Deep Learning with Genetic Algorithms in Energy Sector Forecasting: A Case Study on Electricity Price and Wind Speed in the Brazi," Energies, MDPI, vol. 17(4), pages 1-31, February.
    8. Mokhtar Jlidi & Oscar Barambones & Faiçal Hamidi & Mohamed Aoun, 2024. "ANN for Temperature and Irradiation Prediction and Maximum Power Point Tracking Using MRP-SMC," Energies, MDPI, vol. 17(12), pages 1-21, June.
    9. Farwah Ali Syed & Kwo-Ting Fang & Adiqa Kausar Kiani & Muhammad Shoaib & Muhammad Asif Zahoor Raja, 2025. "Design of Neuro-Stochastic Bayesian Networks for Nonlinear Chaotic Differential Systems in Financial Mathematics," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 241-270, January.
    10. Pulikandala Nithish Kumar & Nneka Umeorah & Alex Alochukwu, 2024. "Dynamic graph neural networks for enhanced volatility prediction in financial markets," Papers 2410.16858, arXiv.org.
    11. Ibrahim Eldesouky Fattoh & Marwa Maghawry Ibrahim & Farid Ali Mousa, 2025. "Unveiling market dynamics: a machine and deep learning approach to Egyptian stock prediction," Future Business Journal, Springer, vol. 11(1), pages 1-12, December.
    12. Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
    13. Saeed Alqadhi & Hoang Thi Hang & Javed Mallick & Abdullah Faiz Saeed Al Asmari, 2024. "Evaluating landslide susceptibility and landscape changes due to road expansion using optimized machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11713-11741, October.
    14. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    15. Xuecheng He & Jujie Wang, 2024. "A Hybrid Forecasting System Based on Comprehensive Feature Selection and Intelligent Optimization for Stock Price Index Forecasting," Mathematics, MDPI, vol. 12(23), pages 1-27, November.
    16. Haojun Pan & Yuxiang Tang & Guoqiang Wang, 2024. "A Stock Index Futures Price Prediction Approach Based on the MULTI-GARCH-LSTM Mixed Model," Mathematics, MDPI, vol. 12(11), pages 1-15, May.
    17. Qin, Fuli & Tong, Mingyu & Huang, Ying & Zhang, Yubo, 2024. "Modeling, prediction and analysis of natural gas consumption in China using a novel dynamic nonlinear multivariable grey delay model," Energy, Elsevier, vol. 305(C).
    18. Jiahao Chen & Xiaofei Li & Junjie Du, 2025. "Analysis of Frequent Trading Effects of Various Machine Learning Models," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1707-1740, March.
    19. Riaz Ud Din & Salman Ahmed & Saddam Hussain Khan, 2024. "A Novel Decision Ensemble Framework: Customized Attention-BiLSTM and XGBoost for Speculative Stock Price Forecasting," Papers 2401.11621, arXiv.org.
    20. Arthur Emanuel de Oliveira Carosia & Ana Estela Antunes Silva & Guilherme Palermo Coelho, 2025. "Predicting the Brazilian Stock Market with Sentiment Analysis, Technical Indicators and Stock Prices: A Deep Learning Approach," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2351-2378, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:10:p:423-:d:1247225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.