IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i8d10.1007_s11069-025-07185-4.html
   My bibliography  Save this article

Assessment of the seismic vulnerability in an urban area with the integration of machine learning methods and GIS

Author

Listed:
  • Ayhan Doğan

    (Hacettepe University)

  • Murat Başeğmez

    (Ministry of National Education)

  • Cevdet Coşkun Aydın

    (Hacettepe University)

Abstract

Predicting earthquake risk areas and risk levels is vital in minimizing the loss of life. In this study, earthquake risk assessment has been conducted by producing predictions for both five-class and two-class risk levels. The methods were tested on Izmir province. For this purpose, the city was divided into 28 zones. Twenty-two different evaluation criteria were assessed using geographic information systems. Risky areas were predicted using Support Vector Machines, k-Nearest Neighbors, Naive Bayes, Decision Trees, and Ensemble classifiers. It has been concluded that the F1 score results, the highest prediction success in training is ensemble classifier with 96%, and tests is decision tree methods with 45% for five classes. In addition, the training results is the ensemble classifier with 98%, and the test results is the decision tree methods with 76% for two classes. When all machine learning results were examined together, test prediction success on data labeled with two-classes was found to be significantly more successful than on data labeled with five classes. As a result of this study, it has been observed that Multi-Criteria Decision Making and machine learning give significant results in the area-based earthquake vulnerability analysis performed together. In addition, this study provides a practical contribution to urban planning and the improvement of development strategies in İzmir by identifying high-risk areas to mitigate seismic risks. Furthermore, the findings offer a data-driven framework for enhancing disaster management policies, enabling authorities to effectively plan emergency responses in vulnerable regions, implement appropriate construction techniques in high-risk areas, and optimize resource allocation.

Suggested Citation

  • Ayhan Doğan & Murat Başeğmez & Cevdet Coşkun Aydın, 2025. "Assessment of the seismic vulnerability in an urban area with the integration of machine learning methods and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(8), pages 9613-9652, May.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07185-4
    DOI: 10.1007/s11069-025-07185-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07185-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07185-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07185-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.