IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.05749.html
   My bibliography  Save this paper

High Frequency Quoting Under Liquidity Constraints

Author

Listed:
  • Aditya Nittur Anantha
  • Shashi Jain
  • Shivam Goyal
  • Dhruv Misra

Abstract

Quoting algorithms are fundamental to electronic trading systems, enabling participants to post limit orders in a systematic and adaptive manner. In multi-asset or multi-contract settings, selecting the appropriate reference instrument for pricing quotes is essential to managing execution risk and minimizing trading costs. This work presents a framework for reference selection based on predictive modeling of short-term price stability. We employ multivariate Hawkes processes to model the temporal clustering and cross-excitation of order flow events, capturing the dynamics of activity at the top of the limit order book. To complement this, we introduce a Composite Liquidity Factor (CLF) that provides instantaneous estimates of slippage based on structural features of the book, such as price discontinuities and depth variation across levels. Unlike Hawkes processes, which capture temporal dependencies but not the absolute price structure of the book, the CLF offers a static snapshot of liquidity. A rolling voting mechanism is used to convert these signals into real-time reference decisions. Empirical evaluation on high-frequency market data demonstrates that forecasts derived from the Hawkes process align more closely with market-optimal quoting choices than those based on CLF. These findings highlight the complementary roles of dynamic event modeling and structural liquidity metrics in guiding quoting behavior under execution constraints.

Suggested Citation

  • Aditya Nittur Anantha & Shashi Jain & Shivam Goyal & Dhruv Misra, 2025. "High Frequency Quoting Under Liquidity Constraints," Papers 2507.05749, arXiv.org.
  • Handle: RePEc:arx:papers:2507.05749
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.05749
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.05749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.