IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.20881.html
   My bibliography  Save this paper

Modeling Income Distribution with the Gause-Witt Population Ecology System

Author

Listed:
  • Marcelo B. Ribeiro

Abstract

This paper presents an empirical application of the Gause-Witt model of population ecology and ecosystems to the income distribution competitive dynamics of social classes in economic systems. The Gause-Witt mathematical system of coupled nonlinear first-order ordinary differential equations employed to model population of species sharing the same ecological niche and competing for the same resources was applied to the income data of Brazil. Previous studies using Brazilian income data from 1981 to 2009 showed that the complementary cumulative distribution functions built from yearly datasets have two distinct segments: the lower income region comprising of about 99% of the population can be represented by the Gompertz curve, whereas the richest 1% is described by the Pareto power-law. The results of applying the Gause-Witt system to Brazilian income data in order to describe the distributive competition dynamics of these two population shares indicate that the 99% and 1% income classes are mostly in the dynamic state of stable coexistence.

Suggested Citation

  • Marcelo B. Ribeiro, 2025. "Modeling Income Distribution with the Gause-Witt Population Ecology System," Papers 2506.20881, arXiv.org.
  • Handle: RePEc:arx:papers:2506.20881
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.20881
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerim Eser Afc{s}ar & Mehmet Ozyi~git & Yusuf Yuksel & Umit Ak{i}nc{i}, 2021. "Testing the Goodwin Growth Cycles with Econophysics Approach in 2002-2019 Period in Turkey," Papers 2106.02546, arXiv.org.
    2. Zeeshan Nezami Ansari & Rajendra Narayan Paramanik, 2024. "Empirical evidence of Goodwin’s growth cycle in the Indian organised manufacturing sector," EconomiA, Emerald Group Publishing Limited, vol. 25(3), pages 439-456, August.
    3. Nicola Scafetta & Sergio Picozzi & Bruce J. West, 2002. "Pareto's law: a model of human sharing and creativity," Papers cond-mat/0209373, arXiv.org.
    4. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    5. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    6. Chakrabarti,Bikas K. & Chakraborti,Anirban & Chakravarty,Satya R. & Chatterjee,Arnab, 2013. "Econophysics of Income and Wealth Distributions," Cambridge Books, Cambridge University Press, number 9781107013445, November.
    7. Ribeiro,Marcelo Byrro, 2020. "Income Distribution Dynamics of Economic Systems," Cambridge Books, Cambridge University Press, number 9781107092532, November.
    8. N. J. Moura & M. B. Ribeiro, 2009. "Evidence for the Gompertz curve in the income distribution of Brazil 1978–2005," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(1), pages 101-120, January.
    9. Moura, N.J. & Ribeiro, Marcelo B., 2013. "Testing the Goodwin growth-cycle macroeconomic dynamics in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2088-2103.
    10. Nicola Scafetta & Sergio Picozzi & Bruce West, 2004. "An out-of-equilibrium model of the distributions of wealth," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 353-364.
    11. Nicola Scafetta & Sergio Picozzi & Bruce J. West, 2004. "An out-of-equilibrium model of the distributions of wealth," Papers cond-mat/0403045, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerim Eser Afc{s}ar & Mehmet Ozyi~git & Yusuf Yuksel & Umit Ak{i}nc{i}, 2021. "Testing the Goodwin Growth Cycles with Econophysics Approach in 2002-2019 Period in Turkey," Papers 2106.02546, arXiv.org.
    2. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    3. Néda, Zoltán & Gere, István & Biró, Tamás S. & Tóth, Géza & Derzsy, Noemi, 2020. "Scaling in income inequalities and its dynamical origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Zoltan Neda & Istvan Gere & Tamas S. Biro & Geza Toth & Noemi Derzsy, 2019. "Scaling in Income Inequalities and its Dynamical Origin," Papers 1911.02449, arXiv.org, revised Mar 2020.
    5. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    6. Soares, Abner D. & Moura Jr., Newton J. & Ribeiro, Marcelo B., 2016. "Tsallis statistics in the income distribution of Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 158-171.
    7. Yougui Wang & Ning Ding, 2005. "Dynamic Process of Money Transfer Models," Papers physics/0507162, arXiv.org.
    8. Moura, N.J. & Ribeiro, Marcelo B., 2013. "Testing the Goodwin growth-cycle macroeconomic dynamics in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2088-2103.
    9. Bourguignon, Marcelo & Saulo, Helton & Fernandez, Rodrigo Nobre, 2016. "A new Pareto-type distribution with applications in reliability and income data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 166-175.
    10. Braun, Dieter, 2006. "Nonequilibrium thermodynamics of wealth condensation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 714-722.
    11. Sarabia, José María & Prieto, Faustino & Trueba, Carmen & Jordá, Vanesa, 2013. "About the modified Gaussian family of income distributions with applications to individual incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1398-1408.
    12. Borba, Jhordan Silveira & Gonçalves, Sebastian & Anteneodo, Celia, 2025. "Inequality in a model of capitalist economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
    13. Florent McIsaac, 2021. "Testing Goodwin with a stochastic differential approach—The United States (1948–2019)," Metroeconomica, Wiley Blackwell, vol. 72(4), pages 696-730, November.
    14. Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
    15. Danial Ludwig & Victor M. Yakovenko, 2021. "Physics-inspired analysis of the two-class income distribution in the USA in 1983-2018," Papers 2110.03140, arXiv.org, revised Jan 2022.
    16. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    17. Jean-Philippe Bouchaud, 2020. "How Much Income Inequality Is Too Much?," Papers 2004.09835, arXiv.org.
    18. Kohlrausch, Gustavo L. & Gonçalves, Sebastian, 2024. "Wealth distribution on a dynamic complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
    19. Joseph, Bijin & Chakrabarti, Bikas K., 2022. "Variation of Gini and Kolkata indices with saving propensity in the Kinetic Exchange model of wealth distribution: An analytical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    20. Elvis Oltean, 2016. "Modelling income, wealth, and expenditure data by use of Econophysics," Papers 1603.08383, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.20881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.