Advanced Applications of Generative AI in Actuarial Science: Case Studies Beyond ChatGPT
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 2," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 230-258, July.
- Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 1," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 207-229, July.
- C. Dugas & Y. Bengio & N. Chapados & P. Vincent & G. Denoncourt & C. Fournier, 2003. "Statistical Learning Algorithms Applied to Automobile Insurance Ratemaking," World Scientific Book Chapters, in: A F Shapiro & L C Jain (ed.), Intelligent And Other Computational Techniques In Insurance Theory and Applications, chapter 4, pages 137-197, World Scientific Publishing Co. Pte. Ltd..
- Roel Henckaerts & Marie-Pier Côté & Katrien Antonio & Roel Verbelen, 2021. "Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 255-285, April.
- Balona, Caesar, 2024. "ActuaryGPT: applications of large language models to insurance and actuarial work," British Actuarial Journal, Cambridge University Press, vol. 29, pages 1-1, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jaiswal, Rachana & Gupta, Shashank & Tiwari, Aviral Kumar, 2024. "Big data and machine learning-based decision support system to reshape the vaticination of insurance claims," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
- Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
- Benjamin Avanzi & Greg Taylor & Melantha Wang & Bernard Wong, 2023. "Machine Learning with High-Cardinality Categorical Features in Actuarial Applications," Papers 2301.12710, arXiv.org.
- Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
- Giorgio Alfredo Spedicato & Christophe Dutang & Quentin Guibert, 2025. "Adjusting Manual Rates to Own Experience: Comparing the Credibility Approach to Machine Learning," Post-Print hal-04821310, HAL.
- Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
- Jamotton, Charlotte & Hainaut, Donatien, 2024. "Latent Dirichlet Allocation for structured insurance data," LIDAM Discussion Papers ISBA 2024008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Diego Zappa & Gian Paolo Clemente & Francesco Della Corte & Nino Savelli, 2023. "Editorial on the Special Issue on Insurance: complexity, risks and its connection with social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 125-130, December.
- Katrien Antonio & Christophe Dutang & Andreas Tsanakas, 2021. "Editorial," Post-Print hal-04748464, HAL.
- Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
- Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
- Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.
- Yu Wang, Muhammad Asraf bin Abdullah, 2024. "Time Series Analysis and Optimization of the Prediction Model of Agricultural Insurance Loss Ratio," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 5(4), November.
- Thomas Poufinas & Periklis Gogas & Theophilos Papadimitriou & Emmanouil Zaganidis, 2023. "Machine Learning in Forecasting Motor Insurance Claims," Risks, MDPI, vol. 11(9), pages 1-19, September.
- Gu, Zheng & Li, Yunxian & Zhang, Minghui & Liu, Yifei, 2023. "Modelling economic losses from earthquakes using regression forests: Application to parametric insurance," Economic Modelling, Elsevier, vol. 125(C).
- Amela Omeraševiæ & Jasmina Selimoviæ, 2020. "Risk factors selection with data mining methods for insurance premium ratemaking," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 38(2), pages 667-696.
- Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
- Loeys, Stijn & Boute, Robert N. & Antonio, Katrien, 2025. "The use of IoT sensor data to dynamically assess maintenance risk in service contracts," European Journal of Operational Research, Elsevier, vol. 324(2), pages 454-465.
- Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
- Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles C. Taylor, 2024. "Bayesian CART models for aggregate claim modeling," Papers 2409.01908, arXiv.org, revised Aug 2025.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2025-09-15 (Computational Economics)
- NEP-INV-2025-09-15 (Investment)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.18942. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2506.18942.html