IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v46y2023i1d10.1007_s10203-022-00382-x.html
   My bibliography  Save this article

Locally-coherent multi-population mortality modelling via neural networks

Author

Listed:
  • Francesca Perla

    (University of Naples - Parthenope)

  • Salvatore Scognamiglio

    (University of Naples - Parthenope)

Abstract

This manuscript proposes an approach for large-scale mortality modelling and forecasting with the assumption of locally-coherence of the mortality forecasts. In general, the coherence prevents diverging long-term mortality forecasts between two or more populations. Despite being considered a desirable property in a multi-population modelling framework, it could be perceived as a strong assumption when a large collection of countries is considered. We propose a neural network model which requires the coherence of the mortality forecasts only within sub-groups of similar populations. The architecture is designed to be easily interpretable and induces the creation of some clusters of countries with similar mortality patterns. This aspect also makes the model an interesting tool for analysing similarities and differences between different countries’ mortality dynamics and identifying opportunities for longevity risk diversification and mitigation. An extensive set of numerical experiments performed using all the available data from the Human Mortality Database shows that our model produces more accurate mortality forecasts with respect to some well-known stochastic mortality models. Furthermore, a massive reduction of the parameters to optimise is achieved with respect to the benchmark mortality models.

Suggested Citation

  • Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
  • Handle: RePEc:spr:decfin:v:46:y:2023:i:1:d:10.1007_s10203-022-00382-x
    DOI: 10.1007/s10203-022-00382-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-022-00382-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-022-00382-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    2. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    3. Giuseppe Giordano & Steven Haberman & Maria Russolillo, 2019. "Coherent modeling of mortality patterns for age-specific subgroups," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 189-204, June.
    4. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    5. Hainaut, Donatien, 2018. "A Neural-Network Analyzer for Mortality Forecast," LIDAM Reprints ISBA 2018027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. David Atance & Alejandro Balbás & Eliseo Navarro, 2020. "Constructing dynamic life tables with a single-factor model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 787-825, December.
    7. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    8. Scognamiglio, Salvatore, 2022. "Calibrating The Lee-Carter And The Poisson Lee-Carter Models Via Neural Networks," ASTIN Bulletin, Cambridge University Press, vol. 52(2), pages 519-561, May.
    9. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    10. Schnürch, Simon & Korn, Ralf, 2022. "Point And Interval Forecasts Of Death Rates Using Neural Networks," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 333-360, January.
    11. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    12. Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 2," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 230-258, July.
    13. Giuseppina Bozzo & Susanna Levantesi & Massimiliano Menzietti, 2021. "Longevity risk and economic growth in sub-populations: evidence from Italy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 101-115, June.
    14. Maria Russolillo & Giuseppe Giordano & Steven Haberman, 2011. "Extending the Lee–Carter model: a three-way decomposition," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2011(2), pages 96-117.
    15. Kleinow, Torsten, 2015. "A common age effect model for the mortality of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 147-152.
    16. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    17. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    18. Shang, Han Lin & Haberman, Steven, 2020. "Forecasting Multiple Functional Time Series In A Group Structure: An Application To Mortality," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 357-379, May.
    19. Tim J. Boonen & Hong Li, 2017. "Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach," Demography, Springer;Population Association of America (PAA), vol. 54(5), pages 1921-1946, October.
    20. Hainaut, Donatien, 2018. "A Neural-Network Analyzer For Mortality Forecast," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 481-508, May.
    21. Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 1," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 207-229, July.
    22. Yumo Dong & Fei Huang & Honglin Yu & Steven Haberman, 2020. "Multi-population mortality forecasting using tensor decomposition," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(8), pages 754-775, September.
    23. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    4. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    5. Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
    6. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    7. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    8. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    9. Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.
    10. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
    11. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    12. Kenneth Wong & Jackie Li & Sixian Tang, 2020. "A modified common factor model for modelling mortality jointly for both sexes," Journal of Population Research, Springer, vol. 37(2), pages 181-212, June.
    13. Jackie Li & Leonie Tickle & Nick Parr, 2016. "A multi-population evaluation of the Poisson common factor model for projecting mortality jointly for both sexes," Journal of Population Research, Springer, vol. 33(4), pages 333-360, December.
    14. Wang, Pengjie & Pantelous, Athanasios A. & Vahid, Farshid, 2023. "Multi-population mortality projection: The augmented common factor model with structural breaks," International Journal of Forecasting, Elsevier, vol. 39(1), pages 450-469.
    15. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    16. Wang, Chou-Wen & Huang, Hong-Chih & Hong, De-Chuan, 2013. "A feasible natural hedging strategy for insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 532-541.
    17. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    18. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    19. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
    20. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:46:y:2023:i:1:d:10.1007_s10203-022-00382-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.