IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v44y2021i1d10.1007_s10203-020-00275-x.html
   My bibliography  Save this article

Longevity risk and economic growth in sub-populations: evidence from Italy

Author

Listed:
  • Giuseppina Bozzo

    (Sapienza University of Rome)

  • Susanna Levantesi

    (Sapienza University of Rome)

  • Massimiliano Menzietti

    (University of Calabria)

Abstract

Forecasting mortality is still a big challenge for Governments that are interested in reliable projections for defining their economic policy at local and national level. The accuracy of mortality forecasting is considered an important issue for longevity risk management. In the literature, many authors have analyzed the long-run relationship between mortality evolution and socioeconomic variables, such as economic growth, unemployment rate or educational level. This paper investigates the existence of a link between mortality and real gross domestic product per capita (GDPPC) over time in the Italian regions. Empirical evidence shows the presence of a relationship between mortality and the level of real GDPPC (and not its trend). Therefore, we propose a multi-population model including the level of real GDPPC and we compare it with the Boonen–Li model (Boonen and Li in Demography 54:1921–1946, 2017). The validity of the model is tested in the out-of-sample forecasting experiment.

Suggested Citation

  • Giuseppina Bozzo & Susanna Levantesi & Massimiliano Menzietti, 2021. "Longevity risk and economic growth in sub-populations: evidence from Italy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 101-115, June.
  • Handle: RePEc:spr:decfin:v:44:y:2021:i:1:d:10.1007_s10203-020-00275-x
    DOI: 10.1007/s10203-020-00275-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-020-00275-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-020-00275-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
    2. José Tapia granados, 2008. "Macroeconomic fluctuations and mortality in postwar Japan," Demography, Springer;Population Association of America (PAA), vol. 45(2), pages 323-343, May.
    3. Malgorzata Seklecka & Norazliani Md. Lazam & Athanasios A. Pantelous & Colin O'Hare, 2019. "Mortality effects of economic fluctuations in selected eurozone countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(1), pages 39-62, January.
    4. Geng Niu & Bertrand Melenberg, 2014. "Trends in Mortality Decrease and Economic Growth," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1755-1773, October.
    5. Engle, R. F. & Granger, C. W. J. (ed.), 1991. "Long-Run Economic Relationships: Readings in Cointegration," OUP Catalogue, Oxford University Press, number 9780198283393.
    6. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    7. Tim J. Boonen & Hong Li, 2017. "Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach," Demography, Springer;Population Association of America (PAA), vol. 54(5), pages 1921-1946, October.
    8. José A. Tapia Granados & Edward L. Ionides, 2011. "Mortality and Macroeconomic Fluctuations in Contemporary Sweden [Mortalité et fluctuations macroéconomiques dans la Suède contemporaine]," European Journal of Population, Springer;European Association for Population Studies, vol. 27(2), pages 157-184, May.
    9. Katja Hanewald, 2011. "Explaining Mortality Dynamics," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 290-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Pengjie & Pantelous, Athanasios A. & Vahid, Farshid, 2023. "Multi-population mortality projection: The augmented common factor model with structural breaks," International Journal of Forecasting, Elsevier, vol. 39(1), pages 450-469.
    2. Lydia Dutton & Athanasios A. Pantelous & Malgorzata Seklecka, 2020. "The impact of economic growth in mortality modelling for selected OECD countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 533-550, April.
    3. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
    4. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    5. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    6. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    7. Jacie Jia Liu, 2021. "A Study on Link Functions for Modelling and Forecasting Old-Age Survival Probabilities of Australia and New Zealand," Risks, MDPI, vol. 9(1), pages 1-18, January.
    8. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    9. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    10. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    11. Katja Hanewald & Thomas Post & Helmut Gründl, 2011. "Stochastic Mortality, Macroeconomic Risks and Life Insurer Solvency," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(3), pages 458-475, July.
    12. Max Brüning & Josselin Thuilliez, 2019. "Mortality and Macroeconomic Conditions: What Can We Learn From France?," Demography, Springer;Population Association of America (PAA), vol. 56(5), pages 1747-1764, October.
    13. Tapia Granados, José A. & Rodriguez, Javier M., 2015. "Health, economic crisis, and austerity: A comparison of Greece, Finland and Iceland," Health Policy, Elsevier, vol. 119(7), pages 941-953.
    14. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    15. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.
    16. Maddalena Cavicchioli & Barbara Pistoresi, 2020. "Unfolding the relationship between mortality, economic fluctuations, and health in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(3), pages 351-362, April.
    17. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    18. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
    19. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    20. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:44:y:2021:i:1:d:10.1007_s10203-020-00275-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.