IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.17549.html
   My bibliography  Save this paper

Predicting Stock Market Crash with Bayesian Generalised Pareto Regression

Author

Listed:
  • Sourish Das

Abstract

This paper develops a Bayesian Generalised Pareto Regression (GPR) model to forecast extreme losses in Indian equity markets, with a focus on the Nifty 50 index. Extreme negative returns, though rare, can cause significant financial disruption, and accurate modelling of such events is essential for effective risk management. Traditional Generalised Pareto Distribution (GPD) models often ignore market conditions; in contrast, our framework links the scale parameter to covariates using a log-linear function, allowing tail risk to respond dynamically to market volatility. We examine four prior choices for Bayesian regularisation of regression coefficients: Cauchy, Lasso (Laplace), Ridge (Gaussian), and Zellner's g-prior. Simulation results suggest that the Cauchy prior delivers the best trade-off between predictive accuracy and model simplicity, achieving the lowest RMSE, AIC, and BIC values. Empirically, we apply the model to large negative returns (exceeding 5%) in the Nifty 50 index. Volatility measures from the Nifty 50, S&P 500, and gold are used as covariates to capture both domestic and global risk drivers. Our findings show that tail risk increases significantly with higher market volatility. In particular, both S&P 500 and gold volatilities contribute meaningfully to crash prediction, highlighting global spillover and flight-to-safety effects. The proposed GPR model offers a robust and interpretable approach for tail risk forecasting in emerging markets. It improves upon traditional EVT-based models by incorporating real-time financial indicators, making it useful for practitioners, policymakers, and financial regulators concerned with systemic risk and stress testing.

Suggested Citation

  • Sourish Das, 2025. "Predicting Stock Market Crash with Bayesian Generalised Pareto Regression," Papers 2506.17549, arXiv.org.
  • Handle: RePEc:arx:papers:2506.17549
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.17549
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.17549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.