IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.17549.html
   My bibliography  Save this paper

Predicting Stock Market Crash with Bayesian Generalised Pareto Regression

Author

Listed:
  • Sourish Das

Abstract

This paper develops a Bayesian Generalised Pareto Regression (GPR) model to forecast extreme losses in Indian equity markets, with a focus on the Nifty 50 index. Extreme negative returns, though rare, can cause significant financial disruption, and accurate modelling of such events is essential for effective risk management. Traditional Generalised Pareto Distribution (GPD) models often ignore market conditions; in contrast, our framework links the scale parameter to covariates using a log-linear function, allowing tail risk to respond dynamically to market volatility. We examine four prior choices for Bayesian regularisation of regression coefficients: Cauchy, Lasso (Laplace), Ridge (Gaussian), and Zellner's g-prior. Simulation results suggest that the Cauchy prior delivers the best trade-off between predictive accuracy and model simplicity, achieving the lowest RMSE, AIC, and BIC values. Empirically, we apply the model to large negative returns (exceeding 5%) in the Nifty 50 index. Volatility measures from the Nifty 50, S&P 500, and gold are used as covariates to capture both domestic and global risk drivers. Our findings show that tail risk increases significantly with higher market volatility. In particular, both S&P 500 and gold volatilities contribute meaningfully to crash prediction, highlighting global spillover and flight-to-safety effects. The proposed GPR model offers a robust and interpretable approach for tail risk forecasting in emerging markets. It improves upon traditional EVT-based models by incorporating real-time financial indicators, making it useful for practitioners, policymakers, and financial regulators concerned with systemic risk and stress testing.

Suggested Citation

  • Sourish Das, 2025. "Predicting Stock Market Crash with Bayesian Generalised Pareto Regression," Papers 2506.17549, arXiv.org.
  • Handle: RePEc:arx:papers:2506.17549
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.17549
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    2. Stefano Giglio & Matteo Maggiori & Johannes Stroebel & Stephen Utkus, 2020. "Inside the Mind of a Stock Market Crash," CESifo Working Paper Series 8334, CESifo.
    3. Julien Hambuckers & Andreas Groll & Thomas Kneib, 2018. "Understanding the economic determinants of the severity of operational losses: A regularized generalized Pareto regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 898-935, September.
    4. Y. Malevergne & V. Pisarenko & D. Sornette, 2006. "On the power of generalized extreme value (GEV) and generalized Pareto distribution (GPD) estimators for empirical distributions of stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(3), pages 271-289.
    5. Anish Rai & Ajit Mahata & Md Nurujjaman & Om Prakash, 2022. "Statistical properties of the aftershocks of stock market crashes revisited: Analysis based on the 1987 crash, financial-crisis-2008 and COVID-19 pandemic," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    2. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    3. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    4. Guillermo Llorente & Jiang Wang, 2020. "Trading and information in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(8), pages 1231-1263, August.
    5. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    6. Ruoxuan Xiong & Eric P. Nichols & Yuan Shen, 2015. "Deep Learning Stock Volatility with Google Domestic Trends," Papers 1512.04916, arXiv.org, revised Feb 2016.
    7. Nico Knuth & Andreas Nastansky, 2025. "Anwendung von Deep Learning in der Prognose der Volatilität des DAX: Ein Vergleich der Prognosegüte von GARCH und LSTM," Statistische Diskussionsbeiträge 59, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
    8. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    9. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    10. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    11. Rui Liu & Jiayou Liang & Haolong Chen & Yujia Hu, 2024. "Analyst Reports and Stock Performance: Evidence from the Chinese Market," Papers 2411.08726, arXiv.org, revised Mar 2025.
    12. Costola, Michele & Lorusso, Marco, 2022. "Spillovers among energy commodities and the Russian stock market," Journal of Commodity Markets, Elsevier, vol. 28(C).
    13. Claudiu Vinte & Marcel Ausloos, 2022. "The Cross-Sectional Intrinsic Entropy. A Comprehensive Stock Market Volatility Estimator," Papers 2205.00104, arXiv.org.
    14. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
    15. Igor Kliakhandler, 2007. "Execution edge of pit traders and intraday price ranges of soft commodities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 343-350.
    16. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    17. Lafuente, Juan A. & Novales, Alfonso, 2003. "Optimal hedging under departures from the cost-of-carry valuation: Evidence from the Spanish stock index futures market," Journal of Banking & Finance, Elsevier, vol. 27(6), pages 1053-1078, June.
    18. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    19. Olivier Ledoit & Michael Wolf, 2022. "Markowitz portfolios under transaction costs," ECON - Working Papers 420, Department of Economics - University of Zurich, revised Sep 2024.
    20. Kenneth Yung & Yen-Chih Liu, 2009. "Implications of futures trading volume: Hedgers versus speculators," Journal of Asset Management, Palgrave Macmillan, vol. 10(5), pages 318-337, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.17549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.