IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.17244.html
   My bibliography  Save this paper

Transformers Beyond Order: A Chaos-Markov-Gaussian Framework for Short-Term Sentiment Forecasting of Any Financial OHLC timeseries Data

Author

Listed:
  • Arif Pathan

Abstract

Short-term sentiment forecasting in financial markets (e.g., stocks, indices) is challenging due to volatility, non-linearity, and noise in OHLC (Open, High, Low, Close) data. This paper introduces a novel CMG (Chaos-Markov-Gaussian) framework that integrates chaos theory, Markov property, and Gaussian processes to improve prediction accuracy. Chaos theory captures nonlinear dynamics; the Markov chain models regime shifts; Gaussian processes add probabilistic reasoning. We enhance the framework with transformer-based deep learning models to capture temporal patterns efficiently. The CMG Framework is designed for fast, resource-efficient, and accurate forecasting of any financial instrument's OHLC time series. Unlike traditional models that require heavy infrastructure and instrument-specific tuning, CMG reduces overhead and generalizes well. We evaluate the framework on market indices, forecasting sentiment for the next trading day's first quarter. A comparative study against statistical, ML, and DL baselines trained on the same dataset with no feature engineering shows CMG consistently outperforms in accuracy and efficiency, making it valuable for analysts and financial institutions.

Suggested Citation

  • Arif Pathan, 2025. "Transformers Beyond Order: A Chaos-Markov-Gaussian Framework for Short-Term Sentiment Forecasting of Any Financial OHLC timeseries Data," Papers 2506.17244, arXiv.org.
  • Handle: RePEc:arx:papers:2506.17244
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.17244
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexeeva, Tatyana A. & Kuznetsov, Nikolay V. & Mokaev, Timur N., 2021. "Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    3. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    4. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-337, July.
    5. William A. Barnett & A. Ronald Gallant & Melvin J. Hinich & Jochen A. Jungeilges & Daniel T. Kaplan, 2004. "A Single-Blind Controlled Competition Among Tests for Nonlinearity and Chaos," Contributions to Economic Analysis, in: Functional Structure and Approximation in Econometrics, pages 581-615, Emerald Group Publishing Limited.
    6. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    7. Blake LeBaron, 1994. "Chaos and Nonlinear Forecastability in Economics and Finance," Finance 9411001, University Library of Munich, Germany.
    8. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    9. James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
    10. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    11. J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
    12. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    2. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    3. Junjie Guo, 2025. "Integration of Wavelet Transform Convolution and Channel Attention with LSTM for Stock Price Prediction based Portfolio Allocation," Papers 2507.01973, arXiv.org, revised Jul 2025.
    4. Robert J Bianchi & Adam E Clements & Michael E Drew, 2009. "HACking at Non-linearity: Evidence from Stocks and Bonds," School of Economics and Finance Discussion Papers and Working Papers Series 244, School of Economics and Finance, Queensland University of Technology.
    5. Marisa Faggini & Bruna Bruno & Anna Parziale, 2019. "Does Chaos Matter in Financial Time Series Analysis?," International Journal of Economics and Financial Issues, Econjournals, vol. 9(4), pages 18-24.
    6. Fernando Fernandez-Rodriguez & Simon Sosvilla-Rivero & Maria Dolores Garcia-Artiles, 1997. "Using nearest neighbour predictors to forecast the Spanish stock market," Investigaciones Economicas, Fundación SEPI, vol. 21(1), pages 75-91, January.
    7. Barnett, William A. & Serletis, Apostolos & Serletis, Demitre, 2015. "Nonlinear And Complex Dynamics In Economics," Macroeconomic Dynamics, Cambridge University Press, vol. 19(8), pages 1749-1779, December.
    8. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    10. Lubos Briatka, 2006. "How Big is Big Enough? Justifying Results of the iid Test Based on the Correlation Integral in the Non-Normal World," CERGE-EI Working Papers wp308, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    11. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    12. Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
    13. Lucía Inglada-Pérez & Sandra González y Gil, 2024. "A Study on the Nature of Complexity in the Spanish Electricity Market Using a Comprehensive Methodological Framework," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    14. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    15. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    16. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    17. Omar, Ayman M.A. & Lambe, Brendan J & Wisniewski, Tomasz Piotr, 2021. "Perceptions of the threat to national security and the stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 504-522.
    18. Olmedo, Elena, 2011. "Is there chaos in the Spanish labour market?," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1045-1053.
    19. Amilon, Henrik & Byström, Hans, 1998. "The Search for Chaos and Nonlinearities in Swedish Stock Index Returns," Working Papers 1998:6, Lund University, Department of Economics.
    20. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.17244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.