IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.15435.html
   My bibliography  Save this paper

Fast Learning of Optimal Policy Trees

Author

Listed:
  • James Cussens
  • Julia Hatamyar
  • Vishalie Shah
  • Noemi Kreif

Abstract

We develop and implement a version of the popular "policytree" method (Athey and Wager, 2021) using discrete optimisation techniques. We test the performance of our algorithm in finite samples and find an improvement in the runtime of optimal policy tree learning by a factor of nearly 50 compared to the original version. We provide an R package, "fastpolicytree", for public use.

Suggested Citation

  • James Cussens & Julia Hatamyar & Vishalie Shah & Noemi Kreif, 2025. "Fast Learning of Optimal Policy Trees," Papers 2506.15435, arXiv.org.
  • Handle: RePEc:arx:papers:2506.15435
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.15435
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    2. Luedtke Alexander R. & van der Laan Mark J., 2016. "Super-Learning of an Optimal Dynamic Treatment Rule," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 305-332, May.
    3. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    4. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    5. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    6. van der Laan Mark J. & Luedtke Alexander R., 2015. "Targeted Learning of the Mean Outcome under an Optimal Dynamic Treatment Rule," Journal of Causal Inference, De Gruyter, vol. 3(1), pages 61-95.
    7. Luedtke Alexander R. & van der Laan Mark J., 2016. "Optimal Individualized Treatments in Resource-Limited Settings," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 283-303, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    3. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    4. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," Economics working papers 2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
    5. Goller, Daniel & Lechner, Michael & Pongratz, Tamara & Wolff, Joachim, 2025. "Active labor market policies for the long-term unemployed: New evidence from causal machine learning," Labour Economics, Elsevier, vol. 94(C).
    6. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    7. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
    8. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
    10. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    11. Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2024. "Policy Learning with Adaptively Collected Data," Management Science, INFORMS, vol. 70(8), pages 5270-5297, August.
    12. Yuchen Hu & Henry Zhu & Emma Brunskill & Stefan Wager, 2024. "Minimax-Regret Sample Selection in Randomized Experiments," Papers 2403.01386, arXiv.org, revised Jun 2024.
    13. Sarah Moon, 2025. "Optimal Policy Choices Under Uncertainty," Papers 2503.03910, arXiv.org, revised Aug 2025.
    14. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    15. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    16. Davide Viviano & Kaspar Wuthrich & Paul Niehaus, 2021. "A model of multiple hypothesis testing," Papers 2104.13367, arXiv.org, revised Jan 2025.
    17. Henrika Langen & Martin Huber, 2023. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-37, January.
    18. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    19. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    20. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.15435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.