IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.18723.html
   My bibliography  Save this paper

Bulls vs Bears: a Trinomial Model of a Financial Asset

Author

Listed:
  • Nahuel I. Arca

Abstract

We present a variation of the well-known binomial model of asset prices. This variation incorporates a bound to short-selling, inspired by a model from Gunduz Caginalp[2]. We formalize this model and prove a formula for all the moments of the logarithmic returns. We also derive a formula for the case with infinitely many investors. As an application of the model, we show how to compute parameters in order to approximate given moments, enabling the modeling of skewness and excess kurtosis. Finally, we generalize the model and give the corresponding formula for the moments of the logarithmic returns, and the algorithm for fitting given moments.

Suggested Citation

  • Nahuel I. Arca, 2025. "Bulls vs Bears: a Trinomial Model of a Financial Asset," Papers 2505.18723, arXiv.org.
  • Handle: RePEc:arx:papers:2505.18723
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.18723
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    2. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    3. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    4. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    5. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    6. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    7. Rendleman, Richard J, Jr & Bartter, Brit J, 1979. "Two-State Option Pricing," Journal of Finance, American Finance Association, vol. 34(5), pages 1093-1110, December.
    8. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    3. Alberto Ciacci & Takumi Sueshige & Hideki Takayasu & Kim Christensen & Misako Takayasu, 2020. "The microscopic relationships between triangular arbitrage and cross-currency correlations in a simple agent based model of foreign exchange markets," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    4. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    5. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    6. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    7. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    8. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    9. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    10. Christopher M Wray & Steven R Bishop, 2016. "A Financial Market Model Incorporating Herd Behaviour," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-28, March.
    11. Shu-Heng Chen & Sai-Ping Li, 2011. "Econophysics: Bridges over a Turbulent Current," Papers 1107.5373, arXiv.org.
    12. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    13. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    14. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    15. Trinidad Segovia, J.E. & Fernández-Martínez, M. & Sánchez-Granero, M.A., 2019. "A novel approach to detect volatility clusters in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Dietmar P.J. Leisen, 1997. "The Random-Time Binomial Model," Finance 9711005, University Library of Munich, Germany, revised 29 Nov 1998.
    17. Derksen, M. & Kleijn, B. & de Vilder, R., 2022. "Heavy tailed distributions in closing auctions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. Biondo, Alessio Emanuele & Mazzarino, Laura & Pluchino, Alessandro, 2024. "Trading strategies and Financial Performances: A simulation approach," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    19. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    20. Matthew Oldham, 2019. "Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective," Complexity, Hindawi, vol. 2019, pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.18723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.