Author
Listed:
- Yingjie Kuang
- Tianchen Zhang
- Zhen-Wei Huang
- Zhongjie Zeng
- Zhe-Yuan Li
- Ling Huang
- Yuefang Gao
Abstract
Accurately predicting customers' purchase intentions is critical to the success of a business strategy. Current researches mainly focus on analyzing the specific types of products that customers are likely to purchase in the future, little attention has been paid to the critical factor of whether customers will engage in repurchase behavior. Predicting whether a customer will make the next purchase is a classic time series forecasting task. However, in real-world purchasing behavior, customer groups typically exhibit imbalance - i.e., there are a large number of occasional buyers and a small number of loyal customers. This head-to-tail distribution makes traditional time series forecasting methods face certain limitations when dealing with such problems. To address the above challenges, this paper proposes a unified Clustering and Attention mechanism GRU model (CAGRU) that leverages multi-modal data for customer purchase intention prediction. The framework first performs customer profiling with respect to the customer characteristics and clusters the customers to delineate the different customer clusters that contain similar features. Then, the time series features of different customer clusters are extracted by GRU neural network and an attention mechanism is introduced to capture the significance of sequence locations. Furthermore, to mitigate the head-to-tail distribution of customer segments, we train the model separately for each customer segment, to adapt and capture more accurately the differences in behavioral characteristics between different customer segments, as well as the similar characteristics of the customers within the same customer segment. We constructed four datasets and conducted extensive experiments to demonstrate the superiority of the proposed CAGRU approach.
Suggested Citation
Yingjie Kuang & Tianchen Zhang & Zhen-Wei Huang & Zhongjie Zeng & Zhe-Yuan Li & Ling Huang & Yuefang Gao, 2025.
"CATS: Clustering-Aggregated and Time Series for Business Customer Purchase Intention Prediction,"
Papers
2505.13558, arXiv.org.
Handle:
RePEc:arx:papers:2505.13558
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.13558. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.