IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.07502.html
   My bibliography  Save this paper

Measuring Financial Resilience Using Backward Stochastic Differential Equations

Author

Listed:
  • Roger J. A. Laeven
  • Matteo Ferrari
  • Emanuela Rosazza Gianin
  • Marco Zullino

Abstract

We propose the resilience rate as a measure of financial resilience. It captures the rate at which a dynamic risk evaluation recovers, i.e., bounces back, after the risk-acceptance set is breached. We develop the associated stochastic calculus by establishing representation theorems of a suitable time-derivative of solutions to backward stochastic differential equations (BSDEs) with jumps, evaluated at stopping times. These results reveal that our resilience rate can be represented as an expectation of the generator of the BSDE. We also introduce resilience-acceptance sets and study their properties in relation to both the resilience rate and the dynamic risk measure. We illustrate our results in several examples.

Suggested Citation

  • Roger J. A. Laeven & Matteo Ferrari & Emanuela Rosazza Gianin & Marco Zullino, 2025. "Measuring Financial Resilience Using Backward Stochastic Differential Equations," Papers 2505.07502, arXiv.org.
  • Handle: RePEc:arx:papers:2505.07502
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.07502
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Cerreia-Vioglio, Simone & Maccheroni, Fabio & Marinacci, Massimo & Montrucchio, Luigi, 2012. "Probabilistic sophistication, second order stochastic dominance and uncertainty aversion," Journal of Mathematical Economics, Elsevier, vol. 48(5), pages 271-283.
    3. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    4. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    5. Gong, Linguo & Sun, Bruce, 1995. "Efficiency measurement of production operations under uncertainty," International Journal of Production Economics, Elsevier, vol. 39(1-2), pages 55-66, April.
    6. Costa, Manon & Gadat, Sébastien & Bercu, Bernard, 2020. "Stochastic approximation algorithms for superquantiles estimation," TSE Working Papers 20-1142, Toulouse School of Economics (TSE).
    7. Jinwook Lee & András Prékopa, 2015. "Decision-making from a risk assessment perspective for Corporate Mergers and Acquisitions," Computational Management Science, Springer, vol. 12(2), pages 243-266, April.
    8. Cheridito, Patrick & Horst, Ulrich & Kupper, Michael & Pirvu, Traian A., 2011. "Equilibrium pricing in incomplete markets under translation invariant preferences," SFB 649 Discussion Papers 2011-083, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    10. Adi Ben-Israel & Aharon Ben-Tal, 1997. "Duality and equilibrium prices in economics of uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(1), pages 51-85, February.
    11. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    12. Daniel Bartl & Samuel Drapeau & Jan Obloj & Johannes Wiesel, 2020. "Sensitivity analysis of Wasserstein distributionally robust optimization problems," Papers 2006.12022, arXiv.org, revised Nov 2021.
    13. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    14. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    15. Darlington, J. & Pantelides, C. C. & Rustem, B. & Tanyi, B. A., 2000. "Decreasing the sensitivity of open-loop optimal solutions in decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 121(2), pages 343-362, March.
    16. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    17. Elisa Pagani, 2015. "Certainty Equivalent: Many Meanings of a Mean," Working Papers 24/2015, University of Verona, Department of Economics.
    18. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    19. Giulio Principi & Fabio Maccheroni, 2022. "Conditional divergence risk measures," Papers 2211.04592, arXiv.org.
    20. Drew P. Kouri & Thomas M. Surowiec, 2020. "Epi-Regularization of Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 774-795, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.07502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.