IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.04592.html

Conditional divergence risk measures

Author

Listed:
  • Giulio Principi
  • Fabio Maccheroni

Abstract

Our paper contributes to the theory of conditional risk measures and conditional certainty equivalents. We adopt a random modular approach which proved to be effective in the study of modular convex analysis and conditional risk measures. In particular, we study the conditional counterpart of optimized certainty equivalents. In the process, we provide representation results for niveloids in the conditional $L^{\infty}$-space. By employing such representation results we retrieve a conditional version of the variational formula for optimized certainty equivalents. In conclusion, we apply this formula to provide a variational representation of the conditional entropic risk measure.

Suggested Citation

  • Giulio Principi & Fabio Maccheroni, 2022. "Conditional divergence risk measures," Papers 2211.04592, arXiv.org.
  • Handle: RePEc:arx:papers:2211.04592
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.04592
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    2. repec:hum:wpaper:sfb649dp2005-006 is not listed on IDEAS
    3. A. Ben-Tal & M. Teboulle, 1987. "Penalty Functions and Duality in Stochastic Programming Via (phi)-Divergence Functionals," Mathematics of Operations Research, INFORMS, vol. 12(2), pages 224-240, May.
    4. Marco Frittelli & Marco Maggis, 2011. "Conditional Certainty Equivalent," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 41-59.
    5. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    6. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures for fluctuations in market volatility under Bochner-Lebesgue spaces," Papers 1806.01166, arXiv.org, revised Jan 2026.
    2. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    3. Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.
    4. Guanyu Jin & Roger J. A. Laeven & Dick den Hertog, 2025. "Robust Optimization of Rank-Dependent Models with Uncertain Probabilities," Papers 2502.11780, arXiv.org, revised Apr 2025.
    5. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    6. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    7. Mucahit Aygun & Roger J. A. Laeven & Mitja Stadje, 2025. "Higher-Order Ambiguity Attitudes," Papers 2501.13143, arXiv.org.
    8. Lacker Daniel, 2018. "Law invariant risk measures and information divergences," Dependence Modeling, De Gruyter, vol. 6(1), pages 228-258, November.
    9. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    10. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    11. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    12. Guanyu Jin & Roger J. A. Laeven & Dick den Hertog & Aharon Ben-Tal, 2024. "Constructing Uncertainty Sets for Robust Risk Measures: A Composition of $\phi$-Divergences Approach to Combat Tail Uncertainty," Papers 2412.05234, arXiv.org.
    13. Jinwook Lee & András Prékopa, 2015. "Decision-making from a risk assessment perspective for Corporate Mergers and Acquisitions," Computational Management Science, Springer, vol. 12(2), pages 243-266, April.
    14. Cheridito, Patrick & Horst, Ulrich & Kupper, Michael & Pirvu, Traian A., 2011. "Equilibrium pricing in incomplete markets under translation invariant preferences," SFB 649 Discussion Papers 2011-083, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    16. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    17. Drapeau, Samuel & Jamneshan, Asgar, 2016. "Conditional preference orders and their numerical representations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 106-118.
    18. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    19. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    20. Alessandro Calvia & Emanuela Rosazza Gianin, 2019. "Risk measures and progressive enlargement of filtration: a BSDE approach," Papers 1904.13257, arXiv.org, revised Mar 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.04592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.