IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.01402.html
   My bibliography  Save this paper

Predicting the Price of Gold in the Financial Markets Using Hybrid Models

Author

Listed:
  • Mohammadhossein Rashidi
  • Mohammad Modarres

Abstract

Predicting the price that has the least error and can provide the best and highest accuracy has been one of the most challenging issues and one of the most critical concerns among capital market activists and researchers. Therefore, a model that can solve problems and provide results with high accuracy is one of the topics of interest among researchers. In this project, using time series prediction models such as ARIMA to estimate the price, variables, and indicators related to technical analysis show the behavior of traders involved in involving psychological factors for the model. By linking all of these variables to stepwise regression, we identify the best variables influencing the prediction of the variable. Finally, we enter the selected variables as inputs to the artificial neural network. In other words, we want to call this whole prediction process the "ARIMA_Stepwise Regression_Neural Network" model and try to predict the price of gold in international financial markets. This approach is expected to be able to be used to predict the types of stocks, commodities, currency pairs, financial market indicators, and other items used in local and international financial markets. Moreover, a comparison between the results of this method and time series methods is also expressed. Finally, based on the results, it can be seen that the resulting hybrid model has the highest accuracy compared to the time series method, regression, and stepwise regression.

Suggested Citation

  • Mohammadhossein Rashidi & Mohammad Modarres, 2025. "Predicting the Price of Gold in the Financial Markets Using Hybrid Models," Papers 2505.01402, arXiv.org.
  • Handle: RePEc:arx:papers:2505.01402
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.01402
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gebhard Kirchgässner & Jürgen Wolters & Uwe Hassler, 2013. "Introduction to Modern Time Series Analysis," Springer Texts in Business and Economics, Springer, edition 2, number 978-3-642-33436-8, March.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Parisi, Antonino & Parisi, Franco & Díaz, David, 2008. "Forecasting gold price changes: Rolling and recursive neural network models," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 477-487, December.
    4. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yan & Ni, Jian & Wen, Liu, 2020. "A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. repec:zbw:rwirep:0243 is not listed on IDEAS
    3. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    4. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    5. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    6. Vladimir Pyrlik & Pavel Elizarov & Aleksandra Leonova, 2021. "Forecasting Realized Volatility Using Machine Learning and Mixed-Frequency Data (the Case of the Russian Stock Market)," CERGE-EI Working Papers wp713, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    7. Belke, Ansgar & Gokus, Christian, 2011. "Volatility Patterns of CDS, Bond and Stock Markets Before and During the Financial Crisis – Evidence from Major Financial Institutions," Ruhr Economic Papers 243, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Curtis Nybo, 2021. "Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks," Papers 2110.09489, arXiv.org.
    9. Yasemin Deniz Akarım, 2013. "A Comparison of Linear and Nonlinear Models in Forecasting Market Risk: The Evidence from Turkish Derivative Exchange," Journal of Economics and Behavioral Studies, AMH International, vol. 5(3), pages 164-172.
    10. Jan Jakub Szczygielski & Chimwemwe Chipeta, 2023. "Properties of returns and variance and the implications for time series modelling: Evidence from South Africa," Modern Finance, Modern Finance Institute, vol. 1(1), pages 35-55.
    11. Mustofa Usman & M. Komarudin & Munti Sarida & Wamiliana Wamiliana & Edwin Russel & Mahatma Kufepaksi & Iskandar Ali Alam & Faiz A.M. Elfaki, 2022. "Analysis of Some Variable Energy Companies by Using VAR(p)-GARCH(r,s) Model : Study From Energy Companies of Qatar over the Years 2015 2022," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 178-191, September.
    12. Ao Yang & Qing Ye & Jia Zhai, 2024. "Volatility forecasting with Hybrid‐long short‐term memory models: Evidence from the COVID‐19 period," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2766-2786, July.
    13. Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2016. "Evolving Fuzzy-GARCH Approach for Financial Volatility Modeling and Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 379-398, October.
    14. Ansgar Belke & Christian Gokus, 2011. "Volatility Patterns of CDS, Bond and Stock Markets Before and During the Financial Crisis – Evidence from Major Financial Institutions," Ruhr Economic Papers 0243, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    15. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
    16. Narayan Tondapu, 2024. "Analyzing Currency Fluctuations: A Comparative Study of GARCH, EWMA, and IV Models for GBP/USD and EUR/GBP Pairs," Papers 2402.07435, arXiv.org.
    17. Yan Hu & Jian Ni, 2024. "A deep learning‐based financial hedging approach for the effective management of commodity risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 879-900, June.
    18. Eunho Koo & Geonwoo Kim, 2023. "A New Neural Network Approach for Predicting the Volatility of Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1665-1679, April.
    19. Md. Abu HASAN & Anita ZAMAN, 2017. "Volatility Nexus Between Stock Market And Macroeconomic Variables In Bangladesh: An Extended Garch Approach," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 64(2), pages 233-243, June.
    20. Sauraj Verma, 2021. "Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 130-142, April.
    21. Werner Kristjanpoller, 2024. "A hybrid econometrics and machine learning based modeling of realized volatility of natural gas," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-32, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.01402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.