IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.18609.html
   My bibliography  Save this paper

Asset pre-selection for a cardinality constrained index tracking portfolio with optional enhancement

Author

Listed:
  • N. Meade
  • C. A. Valle
  • J. E. Beasley

Abstract

An index tracker is a passive investment reproducing the return and risk of a market index, an enhanced index tracker offers a return greater than the index. We consider the selection of a portfolio of given cardinality to track an index, both without and with enhancement. We divide the problem into two steps - (1) pre-selection of assets; (2) estimation of weights on the assets chosen. The eight pre-selection procedures considered use: forward selection (FS) or backward elimination (BE); implemented using ordinary least squares (OLS) or least absolute deviation (LAD) regression; with a regression constant (c) or without (n). The two-step approach avoids the NP-hard problem arising when asset selection and asset weight computation are combined, leading to the selection of a cardinality constrained index tracking portfolio by computer intensive heuristic procedures with many examples in the literature solving for portfolios of 10 or fewer assets. Avoiding these restrictions, we show that out-of-sample tracking errors are roughly proportional to 1/sqrt(cardinality). We find OLS more effective than LAD; BE marginally more effective than FS; (n) marginally more effective than (c). For index tracking, both without and with enhancement, we use BE-OLS(n) in sensitivity analyses on the periods used for selection and evaluation. For a S&P 500 index tracker, we find that out-of-sample tracking error, transaction volume and return-risk ratios all improve as cardinality increases. By contrast for enhanced returns, cardinalities of the order 10 to 20 are most effective. The S&P 500 data used from 3/1/2005 to 29/12/2023 is available to researchers.

Suggested Citation

  • N. Meade & C. A. Valle & J. E. Beasley, 2025. "Asset pre-selection for a cardinality constrained index tracking portfolio with optional enhancement," Papers 2503.18609, arXiv.org.
  • Handle: RePEc:arx:papers:2503.18609
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.18609
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adcock, C. J. & Meade, N., 1994. "A simple algorithm to incorporate transactions costs in quadratic optimisation," European Journal of Operational Research, Elsevier, vol. 79(1), pages 85-94, November.
    2. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    3. Samuel Palmer & Konstantinos Karagiannis & Adam Florence & Asier Rodriguez & Roman Orus & Harish Naik & Samuel Mugel, 2022. "Financial Index Tracking via Quantum Computing with Cardinality Constraints," Papers 2208.11380, arXiv.org.
    4. Alex Frino & David R. Gallagher & Teddy N. Oetomo, 2005. "The Index Tracking Strategies of Passive and Enhanced Index Equity Funds," Australian Journal of Management, Australian School of Business, vol. 30(1), pages 23-55, June.
    5. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
    6. Dose, Christian & Cincotti, Silvano, 2005. "Clustering of financial time series with application to index and enhanced index tracking portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 145-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubio-García, Álvaro & Fernández-Lorenzo, Samuel & García-Ripoll, Juan José & Porras, Diego, 2024. "Accurate solution of the Index Tracking problem with a hybrid simulated annealing algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    2. Li, Qian & Bao, Liang, 2014. "Enhanced index tracking with multiple time-scale analysis," Economic Modelling, Elsevier, vol. 39(C), pages 282-292.
    3. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    4. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    5. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    6. Yu Zheng & Bowei Chen & Timothy M. Hospedales & Yongxin Yang, 2019. "Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach," Papers 1911.05052, arXiv.org, revised Nov 2019.
    7. Reza Bradrania & Davood Pirayesh Neghab & Mojtaba Shafizadeh, 2022. "State-dependent stock selection in index tracking: a machine learning approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(1), pages 1-28, March.
    8. Aboura, Sofiane & Chevallier, Julien, 2017. "A new weighting-scheme for equity indexes," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 159-175.
    9. Spiridon Penev & Pavel Shevchenko & Wei Wu, 2019. "Myopic robust index tracking with Bregman divergence," Papers 1908.07659, arXiv.org, revised Jul 2021.
    10. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).
    11. Sgouropoulos, Nikolaos & Yao, Qiwei & Yastremiz, Claudia, 2015. "Matching a distribution by matching quantiles estimation," LSE Research Online Documents on Economics 57221, London School of Economics and Political Science, LSE Library.
    12. Dimitar Kitanovski & Igor Mishkovski & Viktor Stojkoski & Miroslav Mirchev, 2024. "Network-based diversification of stock and cryptocurrency portfolios," Papers 2408.11739, arXiv.org, revised Mar 2025.
    13. Yu Zheng & Timothy M. Hospedales & Yongxin Yang, 2018. "Diversity and Sparsity: A New Perspective on Index Tracking," Papers 1809.01989, arXiv.org, revised Feb 2020.
    14. repec:osf:socarx:9kber_v1 is not listed on IDEAS
    15. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    16. Nguyen, Linh Hoang & Chevapatrakul, Thanaset & Yao, Kai, 2020. "Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 333-355.
    17. Zhijun Xu & Jing Zhou, 2023. "A simultaneous diagonalization based SOCP relaxation for portfolio optimization with an orthogonality constraint," Computational Optimization and Applications, Springer, vol. 85(1), pages 247-261, May.
    18. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    19. N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.
    20. Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
    21. Michael C. Nwogugu, 2020. "Decision-Making, Sub-Additive Recursive "Matching" Noise And Biases In Risk-Weighted Stock/Bond Index Calculation Methods In Incomplete Markets With Partially Observable Multi-Attribute Pref," Papers 2005.01708, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.18609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.