IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.04300.html
   My bibliography  Save this paper

Enhancing Poverty Targeting with Spatial Machine Learning: An application to Indonesia

Author

Listed:
  • Rolando Gonzales Martinez
  • Mariza Cooray

Abstract

This study leverages spatial machine learning (SML) to enhance the accuracy of Proxy Means Testing (PMT) for poverty targeting in Indonesia. Conventional PMT methodologies are prone to exclusion and inclusion errors due to their inability to account for spatial dependencies and regional heterogeneity. By integrating spatial contiguity matrices, SML models mitigate these limitations, facilitating a more precise identification and comparison of geographical poverty clusters. Utilizing household survey data from the Social Welfare Integrated Data Survey (DTKS) for the periods 2016 to 2020 and 2016 to 2021, this study examines spatial patterns in income distribution and delineates poverty clusters at both provincial and district levels. Empirical findings indicate that the proposed SML approach reduces exclusion errors from 28% to 20% compared to standard machine learning models, underscoring the critical role of spatial analysis in refining machine learning-based poverty targeting. These results highlight the potential of SML to inform the design of more equitable and effective social protection policies, particularly in geographically diverse contexts. Future research can explore the applicability of spatiotemporal models and assess the generalizability of SML approaches across varying socio-economic settings.

Suggested Citation

  • Rolando Gonzales Martinez & Mariza Cooray, 2025. "Enhancing Poverty Targeting with Spatial Machine Learning: An application to Indonesia," Papers 2503.04300, arXiv.org.
  • Handle: RePEc:arx:papers:2503.04300
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.04300
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.04300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.