IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.17757.html
   My bibliography  Save this paper

Robust and Efficient Deep Hedging via Linearized Objective Neural Network

Author

Listed:
  • Lei Zhao
  • Lin Cai

Abstract

Deep hedging represents a cutting-edge approach to risk management for financial derivatives by leveraging the power of deep learning. However, existing methods often face challenges related to computational inefficiency, sensitivity to noisy data, and optimization complexity, limiting their practical applicability in dynamic and volatile markets. To address these limitations, we propose Deep Hedging with Linearized-objective Neural Network (DHLNN), a robust and generalizable framework that enhances the training procedure of deep learning models. By integrating a periodic fixed-gradient optimization method with linearized training dynamics, DHLNN stabilizes the training process, accelerates convergence, and improves robustness to noisy financial data. The framework incorporates trajectory-wide optimization and Black-Scholes Delta anchoring, ensuring alignment with established financial theory while maintaining flexibility to adapt to real-world market conditions. Extensive experiments on synthetic and real market data validate the effectiveness of DHLNN, demonstrating its ability to achieve faster convergence, improved stability, and superior hedging performance across diverse market scenarios.

Suggested Citation

  • Lei Zhao & Lin Cai, 2025. "Robust and Efficient Deep Hedging via Linearized Objective Neural Network," Papers 2502.17757, arXiv.org.
  • Handle: RePEc:arx:papers:2502.17757
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.17757
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Kallsen & Johannes Muhle-Karbe, 2015. "Option Pricing And Hedging With Small Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 25(4), pages 702-723, October.
    2. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    3. Silvana M. Pesenti & Sebastian Jaimungal & Yuri F. Saporito & Rodrigo S. Targino, 2023. "Risk Budgeting Allocation for Dynamic Risk Measures," Papers 2305.11319, arXiv.org, revised Oct 2024.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Blair Hull & Anlong Li & Xiao Qiao, 2023. "Option Pricing via Breakeven Volatility," Financial Analysts Journal, Taylor & Francis Journals, vol. 79(1), pages 99-119, January.
    7. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    2. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    3. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    4. Heller, Yuval & Schreiber, Amnon, 2020. "Short-term investments and indices of risk," Theoretical Economics, Econometric Society, vol. 15(3), July.
    5. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    6. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    7. Patrice Gaillardetz & Saeb Hachem, 2019. "Risk-Control Strategies," Papers 1908.02228, arXiv.org.
    8. Jinglun Yao & Sabine Laurent & Brice B'enaben, 2017. "Managing Volatility Risk: An Application of Karhunen-Lo\`eve Decomposition and Filtered Historical Simulation," Papers 1710.00859, arXiv.org.
    9. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    10. Scheuenstuhl, Gerhard & Zagst, Rudi, 2008. "Integrated portfolio management with options," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1477-1500, March.
    11. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    12. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    13. Federico Giorgi & Stefano Herzel & Paolo Pigato, 2023. "A Reinforcement Learning Algorithm for Trading Commodities," CEIS Research Paper 552, Tor Vergata University, CEIS, revised 18 Feb 2023.
    14. Mercurio, Fabio, 2001. "Claim pricing and hedging under market incompleteness and "mean-variance" preferences," European Journal of Operational Research, Elsevier, vol. 133(3), pages 635-652, September.
    15. Gourieroux, C. & Monfort, A., 2005. "The econometrics of efficient portfolios," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 1-41, January.
    16. Jay Cao & Jacky Chen & Soroush Farghadani & John Hull & Zissis Poulos & Zeyu Wang & Jun Yuan, 2022. "Gamma and Vega Hedging Using Deep Distributional Reinforcement Learning," Papers 2205.05614, arXiv.org, revised Jan 2023.
    17. Chatterjee, Somnath & Jobst, Andreas, 2019. "Market-implied systemic risk and shadow capital adequacy," Bank of England working papers 823, Bank of England.
    18. Thierry Chauveau & Sylvain Friederich & Jérôme Héricourt & Emmanuel Jurczenko & Catherine Lubochinsky & Bertrand Maillet & Christophe Moussu & Bogdan Négréa & Hélène Raymond-Feingold, 2004. "La volatilité des marchés augmente-t-elle ?," Revue d'Économie Financière, Programme National Persée, vol. 74(1), pages 17-44.
    19. Sharif Mozumder & Mohammad Zoynul Abedin & Raad Lalon & Amjad Hossain, 2024. "Which User-Friendly Model is the Best for BASEL-III? An Emerging Market Study," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 3049-3086, November.
    20. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.17757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.