IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.04450.html
   My bibliography  Save this paper

Partial Identification of Distributional Treatment Effects in Panel Data using Copula Equality Assumptions

Author

Listed:
  • Heshani Madigasekara
  • D. S. Poskitt
  • Lina Zhang
  • Xueyan Zhao

Abstract

This paper aims to partially identify the distributional treatment effects (DTEs) that depend on the unknown joint distribution of treated and untreated potential outcomes. We construct the DTE bounds using panel data and allow individuals to switch between the treated and untreated states more than once over time. Individuals are grouped based on their past treatment history, and DTEs are allowed to be heterogeneous across different groups. We provide two alternative group-wise copula equality assumptions to bound the unknown joint and the DTEs, both of which leverage information from the past observations. Testability of these two assumptions are also discussed, and test results are presented. We apply this method to study the treatment effect heterogeneity of exercising on the adults' body weight. These results demonstrate that our method improves the identification power of the DTE bounds compared to the existing methods.

Suggested Citation

  • Heshani Madigasekara & D. S. Poskitt & Lina Zhang & Xueyan Zhao, 2024. "Partial Identification of Distributional Treatment Effects in Panel Data using Copula Equality Assumptions," Papers 2411.04450, arXiv.org.
  • Handle: RePEc:arx:papers:2411.04450
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.04450
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Callaway, Brantly, 2021. "Bounds on distributional treatment effect parameters using panel data with an application on job displacement," Journal of Econometrics, Elsevier, vol. 222(2), pages 861-881.
    2. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    3. Carlos A. Flores & Xuan Chen, 2018. "Average Treatment Effect Bounds with an Instrumental Variable: Theory and Practice," Springer Books, Springer, number 978-981-13-2017-0, April.
    4. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    5. Thomas M. Russell, 2021. "Sharp Bounds on Functionals of the Joint Distribution in the Analysis of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 532-546, March.
    6. Brantly Callaway & Tong Li, 2019. "Quantile treatment effects in difference in differences models with panel data," Quantitative Economics, Econometric Society, vol. 10(4), pages 1579-1618, November.
    7. James Heckman, 1997. "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 441-462.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Boes, 2013. "Nonparametric analysis of treatment effects in ordered response models," Empirical Economics, Springer, vol. 44(1), pages 81-109, February.
    2. Belzil, Christian & Hansen, Jörgen, 2005. "A Structural Analysis of the Correlated Random Coefficient Wage Regression Model with an Application to the OLS-IV Puzzle," IZA Discussion Papers 1585, Institute of Labor Economics (IZA).
    3. Daniel Kaliski, 2023. "Identifying the impact of health insurance on subgroups with changing rates of diagnosis," Health Economics, John Wiley & Sons, Ltd., vol. 32(9), pages 2098-2112, September.
    4. Florian F Gunsilius, 2025. "A primer on optimal transport for causal inference with observational data," Papers 2503.07811, arXiv.org, revised Mar 2025.
    5. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    6. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    7. Belzil, Christian & Hansen, Jorgen, 2007. "A structural analysis of the correlated random coefficient wage regression model," Journal of Econometrics, Elsevier, vol. 140(2), pages 827-848, October.
    8. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    9. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    10. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    11. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    12. Zamarro, Gema, 2010. "Accounting for heterogeneous returns in sequential schooling decisions," Journal of Econometrics, Elsevier, vol. 156(2), pages 260-276, June.
    13. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    14. Santiago Acerenza & Otávio Bartalotti & Désiré Kédagni, 2023. "Testing identifying assumptions in bivariate probit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 407-422, April.
    15. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    16. P. Lovaglio & S. Verzillo, 2016. "Heterogeneous economic returns to higher education: evidence from Italy," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 791-822, March.
    17. Vishal Kamat & Samuel Norris & Matthew Pecenco, 2023. "Identification in Multiple Treatment Models under Discrete Variation," Papers 2307.06174, arXiv.org.
    18. Soviadan, Mawussi Kossivi & Ahmed, Osama & Kubik, Zaneta & Enete, Anselm Anibueze & Okoye, Chukwuemeka Uzoma & Glauben, Thomas, 2024. "Evaluating the impact of improved technology adoption in traditional poultry farming on potential outcomes of farmers: Evidence from rural Togo," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(1).
    19. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    20. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.04450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.