IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.14695.html
   My bibliography  Save this paper

Chain-structured neural architecture search for financial time series forecasting

Author

Listed:
  • Denis Levchenko
  • Efstratios Rappos
  • Shabnam Ataee
  • Biagio Nigro
  • Stephan Robert

Abstract

We compare three popular neural architecture search strategies on chain-structured search spaces: Bayesian optimization, the hyperband method, and reinforcement learning in the context of financial time series forecasting.

Suggested Citation

  • Denis Levchenko & Efstratios Rappos & Shabnam Ataee & Biagio Nigro & Stephan Robert, 2024. "Chain-structured neural architecture search for financial time series forecasting," Papers 2403.14695, arXiv.org.
  • Handle: RePEc:arx:papers:2403.14695
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.14695
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frederick Nsambu Kijjambu & Benjamin Musiita & Asaph Kaburura Katarangi & Geoffrey Kahangane & Sheilla Akampwera, 2023. "Determinants of Uganda’s Debt Sustainability: The Public Debt Dynamics Model in Perspective," Journal of Economics and Behavioral Studies, AMH International, vol. 15(4), pages 106-124.
    2. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    4. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    5. Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
    6. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    7. Nascimento, Erick Giovani Sperandio & de Melo, Talison A.C. & Moreira, Davidson M., 2023. "A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy," Energy, Elsevier, vol. 278(C).
    8. Pegah Eslamieh & Mehdi Shajari & Ahmad Nickabadi, 2023. "User2Vec: A Novel Representation for the Information of the Social Networks for Stock Market Prediction Using Convolutional and Recurrent Neural Networks," Mathematics, MDPI, vol. 11(13), pages 1-26, July.
    9. Tom Liu & Stefan Zohren, 2023. "Multi-Factor Inception: What to Do with All of These Features?," Papers 2307.13832, arXiv.org.
    10. Theodoros Zafeiriou & Dimitris Kalles, 2024. "Off-the-Shelf Neural Network Architectures for Forex Time Series Prediction come at a Cost," Papers 2405.10679, arXiv.org.
    11. Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
    12. Shichao Huang & Jing Zhang & Yu He & Xiaofan Fu & Luqin Fan & Gang Yao & Yongjun Wen, 2022. "Short-Term Load Forecasting Based on the CEEMDAN-Sample Entropy-BPNN-Transformer," Energies, MDPI, vol. 15(10), pages 1-14, May.
    13. Gonca Gürses-Tran & Antonello Monti, 2022. "Advances in Time Series Forecasting Development for Power Systems’ Operation with MLOps," Forecasting, MDPI, vol. 4(2), pages 1-24, May.
    14. Tom Liu & Stephen Roberts & Stefan Zohren, 2023. "Deep Inception Networks: A General End-to-End Framework for Multi-asset Quantitative Strategies," Papers 2307.05522, arXiv.org.
    15. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Liu, Dinggao & Chen, Kaijie & Cai, Yi & Tang, Zhenpeng, 2024. "Interpretable EU ETS Phase 4 prices forecasting based on deep generative data augmentation approach," Finance Research Letters, Elsevier, vol. 61(C).
    17. Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
    18. de Azevedo Takara, Lucas & Teixeira, Ana Clara & Yazdanpanah, Hamed & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2024. "Optimizing multi-step wind power forecasting: Integrating advanced deep neural networks with stacking-based probabilistic learning," Applied Energy, Elsevier, vol. 369(C).
    19. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    20. Semen Budennyy & Alexey Kazakov & Elizaveta Kovtun & Leonid Zhukov, 2022. "New drugs and stock market: how to predict pharma market reaction to clinical trial announcements," Papers 2208.07248, arXiv.org, revised Aug 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.14695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.