IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.03240.html
   My bibliography  Save this paper

Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects

Author

Listed:
  • Masahiro Kato

Abstract

This study investigates the estimation and the statistical inference about Conditional Average Treatment Effects (CATEs), which have garnered attention as a metric representing individualized causal effects. In our data-generating process, we assume linear models for the outcomes associated with binary treatments and define the CATE as a difference between the expected outcomes of these linear models. This study allows the linear models to be high-dimensional, and our interest lies in consistent estimation and statistical inference for the CATE. In high-dimensional linear regression, one typical approach is to assume sparsity. However, in our study, we do not assume sparsity directly. Instead, we consider sparsity only in the difference of the linear models. We first use a doubly robust estimator to approximate this difference and then regress the difference on covariates with Lasso regularization. Although this regression estimator is consistent for the CATE, we further reduce the bias using the techniques in double/debiased machine learning (DML) and debiased Lasso, leading to $\sqrt{n}$-consistency and confidence intervals. We refer to the debiased estimator as the triple/debiased Lasso (TDL), applying both DML and debiased Lasso techniques. We confirm the soundness of our proposed method through simulation studies.

Suggested Citation

  • Masahiro Kato, 2024. "Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects," Papers 2403.03240, arXiv.org.
  • Handle: RePEc:arx:papers:2403.03240
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.03240
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    4. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    5. Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2022. "Estimation of Conditional Average Treatment Effects With High-Dimensional Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 313-327, January.
    6. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    7. Sokbae (Simon) Lee & Yoon-Jae Whang, 2009. "Nonparametric tests of conditional treatment effects," CeMMAP working papers CWP36/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Masahiro Kato & Masaaki Imaizumi, 2023. "CATE Lasso: Conditional Average Treatment Effect Estimation with High-Dimensional Linear Regression," Papers 2310.16819, arXiv.org.
    9. Yu‐Chin Hsu, 2017. "Consistent tests for conditional treatment effects," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 1-22, February.
    10. Masahiro Kato & Masaaki Imaizumi, 2022. "Benign-Overfitting in Conditional Average Treatment Effect Prediction with Linear Regression," Papers 2202.05245, arXiv.org, revised Feb 2022.
    11. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
    12. Victor Chernozhukov & Christian Hansen & Nathan Kallus & Martin Spindler & Vasilis Syrgkanis, 2024. "Applied Causal Inference Powered by ML and AI," Papers 2403.02467, arXiv.org.
    13. Hui Lan & Vasilis Syrgkanis, 2023. "Causal Q-Aggregation for CATE Model Selection," Papers 2310.16945, arXiv.org, revised Nov 2023.
    14. van der Laan Mark J., 2006. "Statistical Inference for Variable Importance," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-33, February.
    15. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    16. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    17. Tianxi Cai & T. Tony Cai & Zijian Guo, 2021. "Optimal statistical inference for individualized treatment effects in high‐dimensional models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 669-719, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    2. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    3. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    4. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    5. Heejun Shin & Joseph Antonelli, 2023. "Improved inference for doubly robust estimators of heterogeneous treatment effects," Biometrics, The International Biometric Society, vol. 79(4), pages 3140-3152, December.
    6. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    7. Zimmert, Franziska & Zimmert, Michael, 2020. "Paid parental leave and maternal reemployment: Do part-time subsidies help or harm?," Economics Working Paper Series 2002, University of St. Gallen, School of Economics and Political Science.
    8. Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
    9. Riccardo Di Francesco, 2022. "Aggregation Trees," CEIS Research Paper 546, Tor Vergata University, CEIS, revised 20 Nov 2023.
    10. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
    11. Riccardo Di Francesco, 2024. "Aggregation Trees," Papers 2410.11408, arXiv.org.
    12. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    14. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    15. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    16. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    17. Oliver Dukes & Vahe Avagyan & Stijn Vansteelandt, 2020. "Doubly robust tests of exposure effects under high‐dimensional confounding," Biometrics, The International Biometric Society, vol. 76(4), pages 1190-1200, December.
    18. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    19. Daniel Jacob, 2019. "Group Average Treatment Effects for Observational Studies," Papers 1911.02688, arXiv.org, revised Mar 2020.
    20. Alexander P. Keil & Katie M. O’Brien, 2024. "Considerations and Targeted Approaches to Identifying Bad Actors in Exposure Mixtures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 459-481, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.03240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.