IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.07738.html
   My bibliography  Save this paper

Revisiting Cont's Stylized Facts for Modern Stock Markets

Author

Listed:
  • Ethan Ratliff-Crain
  • Colin M. Van Oort
  • James Bagrow
  • Matthew T. K. Koehler
  • Brian F. Tivnan

Abstract

In 2001, Rama Cont introduced a now-widely used set of 'stylized facts' to synthesize empirical studies of financial price changes (returns), resulting in 11 statistical properties common to a large set of assets and markets. These properties are viewed as constraints a model should be able to reproduce in order to accurately represent returns in a market. It has not been established whether the characteristics Cont noted in 2001 still hold for modern markets following significant regulatory shifts and technological advances. It is also not clear whether a given time series of financial returns for an asset will express all 11 stylized facts. We test both of these propositions by attempting to replicate each of Cont's 11 stylized facts for intraday returns of the individual stocks in the Dow 30, using the same authoritative data as that used by the U.S. regulator from October 2018 - March 2019. We find conclusive evidence for eight of Cont's original facts and no support for the remaining three. Our study represents the first test of Cont's 11 stylized facts against a consistent set of stocks, therefore providing insight into how these stylized facts should be viewed in the context of modern stock markets.

Suggested Citation

  • Ethan Ratliff-Crain & Colin M. Van Oort & James Bagrow & Matthew T. K. Koehler & Brian F. Tivnan, 2023. "Revisiting Cont's Stylized Facts for Modern Stock Markets," Papers 2311.07738, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2311.07738
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.07738
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Todorova, Lora & Vogt, Bodo, 2011. "Power law distribution in high frequency financial data? An econometric analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4433-4444.
    2. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    3. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    4. Silva, A. Christian & Yakovenko, Victor M., 2007. "Stochastic volatility of financial markets as the fluctuating rate of trading: An empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 278-285.
    5. Moonis Shakeel & Bhavana Srivastava, 2021. "Stylized Facts of High-frequency Financial Time Series Data," Global Business Review, International Management Institute, vol. 22(2), pages 550-564, April.
    6. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    7. Y. Malevergne & V. Pisarenko & D. Sornette, 2005. "Empirical distributions of stock returns: between the stretched exponential and the power law?," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 379-401.
    8. Brian F Tivnan & David Rushing Dewhurst & Colin M Van Oort & John H Ring IV & Tyler J Gray & Brendan F Tivnan & Matthew T K Koehler & Matthew T McMahon & David M Slater & Jason G Veneman & Christopher, 2020. "Fragmentation and inefficiencies in US equity markets: Evidence from the Dow 30," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    2. Ballocchi, Giuseppe & Dacorogna, Michel M. & Hopman, Carl M. & Muller, Ulrich A. & Olsen, Richard B., 1999. "The intraday multivariate structure of the Eurofutures markets," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 479-513, December.
    3. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    4. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Science & Finance (CFM) working paper archive 500028, Science & Finance, Capital Fund Management.
    5. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    6. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    7. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    9. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    10. Batten, Jonathan A. & Ellis, Craig A., 2005. "Paramater estimation bias and volatility scaling in Black-Scholes option prices," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 165-176.
    11. Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2003. "LARCH, leverage and long memory," LSE Research Online Documents on Economics 2020, London School of Economics and Political Science, LSE Library.
    12. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    13. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
    14. Vladimir Petrov & Anton Golub & Richard Olsen, 2019. "Instantaneous Volatility Seasonality of High-Frequency Markets in Directional-Change Intrinsic Time," JRFM, MDPI, vol. 12(2), pages 1-31, April.
    15. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Papers cond-mat/9712318, arXiv.org, revised Jan 1998.
    16. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
    17. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    18. Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2004. "LARCH, leverage, and long memory," LSE Research Online Documents on Economics 294, London School of Economics and Political Science, LSE Library.
    19. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    20. Derksen, M. & Kleijn, B. & de Vilder, R., 2022. "Heavy tailed distributions in closing auctions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.07738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.