IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.10477.html
   My bibliography  Save this paper

Derivatives Sensitivities Computation under Heston Model on GPU

Author

Listed:
  • Pierre-Antoine Arsaguet
  • Paul Bilokon

Abstract

This report investigates the computation of option Greeks for European and Asian options under the Heston stochastic volatility model on GPU. We first implemented the exact simulation method proposed by Broadie and Kaya and used it as a baseline for precision and speed. We then proposed a novel method for computing Greeks using the Milstein discretisation method on GPU. Our results show that the proposed method provides a speed-up up to 200x compared to the exact simulation implementation and that it can be used for both European and Asian options. However, the accuracy of the GPU method for estimating Rho is inferior to the CPU method. Overall, our study demonstrates the potential of GPU for computing derivatives sensitivies with numerical methods.

Suggested Citation

  • Pierre-Antoine Arsaguet & Paul Bilokon, 2023. "Derivatives Sensitivities Computation under Heston Model on GPU," Papers 2309.10477, arXiv.org.
  • Handle: RePEc:arx:papers:2309.10477
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.10477
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    2. Jan Baldeaux & Dale Roberts, 2012. "Quasi-Monte Carol Methods for the Heston Model," Research Paper Series 307, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Baldeaux & Dale Roberts, 2012. "Quasi-Monte Carlo methods for the Heston model," Papers 1202.3217, arXiv.org, revised May 2012.
    2. Ballestra, Luca Vincenzo & Pacelli, Graziella & Zirilli, Francesco, 2007. "A numerical method to price exotic path-dependent options on an underlying described by the Heston stochastic volatility model," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3420-3437, November.
    3. Shafi, Khuram & Latif, Natasha & Shad, Shafqat Ali & Idrees, Zahra & Gulzar, Saqib, 2018. "Estimating option greeks under the stochastic volatility using simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1288-1296.
    4. Wenbin Hu & Junzi Zhou, 2017. "Backward simulation methods for pricing American options under the CIR process," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1683-1695, November.
    5. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    6. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    7. Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. T. Pellegrino & P. Sabino, 2015. "Enhancing Least Squares Monte Carlo with diffusion bridges: an application to energy facilities," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 761-772, May.
    10. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    11. Roger Lord, 2010. "Comment on: A Note on the Discontinuity Problem in Heston's Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 373-376.
    12. Zheng Cao & Xinhao Lin, 2024. "Theoretical and Empirical Validation of Heston Model," Papers 2409.12453, arXiv.org, revised Oct 2024.
    13. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    14. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    15. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.
    16. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    17. Konrad Mueller & Amira Akkari & Lukas Gonon & Ben Wood, 2024. "Fast Deep Hedging with Second-Order Optimization," Papers 2410.22568, arXiv.org.
    18. Annalena Mickel & Andreas Neuenkirch, 2021. "The Weak Convergence Rate of Two Semi-Exact Discretization Schemes for the Heston Model," Risks, MDPI, vol. 9(1), pages 1-38, January.
    19. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.
    20. Chih-Chen Hsu & Chung-Gee Lin & Tsung-Jung Kuo, 2020. "Pricing of Arithmetic Asian Options under Stochastic Volatility Dynamics: Overcoming the Risks of High-Frequency Trading," Mathematics, MDPI, vol. 8(12), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.10477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.