IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.00088.html
   My bibliography  Save this paper

Deep Semi-Supervised Anomaly Detection for Finding Fraud in the Futures Market

Author

Listed:
  • Timothy DeLise

Abstract

Modern financial electronic exchanges are an exciting and fast-paced marketplace where billions of dollars change hands every day. They are also rife with manipulation and fraud. Detecting such activity is a major undertaking, which has historically been a job reserved exclusively for humans. Recently, more research and resources have been focused on automating these processes via machine learning and artificial intelligence. Fraud detection is overwhelmingly associated with the greater field of anomaly detection, which is usually performed via unsupervised learning techniques because of the lack of labeled data needed for supervised learning. However, a small quantity of labeled data does often exist. This research article aims to evaluate the efficacy of a deep semi-supervised anomaly detection technique, called Deep SAD, for detecting fraud in high-frequency financial data. We use exclusive proprietary limit order book data from the TMX exchange in Montr\'eal, with a small set of true labeled instances of fraud, to evaluate Deep SAD against its unsupervised predecessor. We show that incorporating a small amount of labeled data into an unsupervised anomaly detection framework can greatly improve its accuracy.

Suggested Citation

  • Timothy DeLise, 2023. "Deep Semi-Supervised Anomaly Detection for Finding Fraud in the Futures Market," Papers 2309.00088, arXiv.org.
  • Handle: RePEc:arx:papers:2309.00088
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.00088
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boris Hanin, 2019. "Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations," Mathematics, MDPI, vol. 7(10), pages 1-9, October.
    2. Markus Goldstein & Seiichi Uchida, 2016. "A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-31, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    2. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org.
    3. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    4. Priyanga Dilini Talagala & Rob J Hyndman & Kate Smith-Miles, 2019. "Anomaly Detection in High Dimensional Data," Monash Econometrics and Business Statistics Working Papers 20/19, Monash University, Department of Econometrics and Business Statistics.
    5. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
    6. Rehan Zubair Khalid & Atta Ullah & Asifullah Khan & Afrasyab Khan & Mansoor Hameed Inayat, 2023. "Comparison of Standalone and Hybrid Machine Learning Models for Prediction of Critical Heat Flux in Vertical Tubes," Energies, MDPI, vol. 16(7), pages 1-22, March.
    7. Priyanga Dilini Talagala & Rob J Hyndman & Catherine Leigh & Kerrie Mengersen & Kate Smith-Miles, 2019. "A Feature-Based Framework for Detecting Technical Outliers in Water-Quality Data from In Situ Sensors," Monash Econometrics and Business Statistics Working Papers 1/19, Monash University, Department of Econometrics and Business Statistics.
    8. Piero Mazzarisi & Adele Ravagnani & Paola Deriu & Fabrizio Lillo & Francesca Medda & Antonio Russo, 2022. "A machine learning approach to support decision in insider trading detection," Papers 2212.05912, arXiv.org.
    9. Cian Ryan & Finbarr Murphy & Martin Mullins, 2019. "Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1125-1140, May.
    10. Elmira Asadi-Fard & Samereh Falahatkar & Mahdi Tanha Ziyarati & Xiaodong Zhang & Mariapia Faruolo, 2023. "Assessment of RXD Algorithm Capability for Gas Flaring Detection through OLI-SWIR Channels," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    11. Kenichiro Nagata & Toshikazu Tsuji & Kimitaka Suetsugu & Kayoko Muraoka & Hiroyuki Watanabe & Akiko Kanaya & Nobuaki Egashira & Ichiro Ieiri, 2021. "Detection of overdose and underdose prescriptions—An unsupervised machine learning approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    12. Ruhi Kiran Bajaj & Rebecca Mary Meiring & Fernando Beltran, 2023. "Co-Design, Development, and Evaluation of a Health Monitoring Tool Using Smartwatch Data: A Proof-of-Concept Study," Future Internet, MDPI, vol. 15(3), pages 1-15, March.
    13. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
    15. Shuo Xu & Liyuan Hao & Xin An & Dongsheng Zhai & Hongshen Pang, 2019. "Types of DOI errors of cited references in Web of Science with a cleaning method," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1427-1437, September.
    16. Milan Miric & Hakan Ozalp & Erdem Dogukan Yilmaz, 2023. "Trade‐offs to using standardized tools: Innovation enablers or creativity constraints?," Strategic Management Journal, Wiley Blackwell, vol. 44(4), pages 909-942, April.
    17. Parminder Singh & Sujatha Krishnamoorthy & Anand Nayyar & Ashish Kr Luhach & Avinash Kaur, 2019. "Soft-computing-based false alarm reduction for hierarchical data of intrusion detection system," International Journal of Distributed Sensor Networks, , vol. 15(10), pages 15501477198, October.
    18. Erkuş, Ekin Can & Purutçuoğlu, Vilda, 2021. "Outlier detection and quasi-periodicity optimization algorithm: Frequency domain based outlier detection (FOD)," European Journal of Operational Research, Elsevier, vol. 291(2), pages 560-574.
    19. Durgesh Samariya & Amit Thakkar, 2023. "A Comprehensive Survey of Anomaly Detection Algorithms," Annals of Data Science, Springer, vol. 10(3), pages 829-850, June.
    20. Christoph Hertrich & Martin Skutella, 2023. "Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1079-1097, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.00088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.