IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/127964.html
   My bibliography  Save this paper

Combining machine learning and dynamic system techniques to early detection of respiratory outbreaks in routinely collected primary healthcare records

Author

Listed:
  • Borges, Dérick G. F.
  • Coutinho, Eluã R.
  • Cerqueira-Silva, Thiago
  • Grave, Malú
  • Vasconcelos, Adriano O.
  • Landau, Luiz
  • Coutinho, Alvaro L. G. A.
  • Ramos, Pablo Ivan P.
  • Barral-Netto, Manoel
  • Pinho, Suani T. R.
  • Barreto, Marcos E.
  • Andrade, Roberto F. S.

Abstract

Background: Methods that enable early outbreak detection represent powerful tools in epidemiological surveillance, allowing adequate planning and timely response to disease surges. Syndromic surveillance data collected from primary healthcare encounters can be used as a proxy for the incidence of confirmed cases of respiratory diseases. Deviations from historical trends in encounter numbers can provide valuable insights into emerging diseases with the potential to trigger widespread outbreaks. Methods: Unsupervised machine learning methods and dynamical systems concepts were combined into the Mixed Model of Artificial Intelligence and Next-Generation (MMAING) ensemble, which aims to detect early signs of outbreaks based on primary healthcare encounters. We used data from 27 Brazilian health regions, which cover 41% of the country’s territory, from 2017-2023 to identify anomalous increases in primary healthcare encounters that could be associated with an epidemic onset. Our validation approach comprised (i) a comparative analysis across Brazilian capitals; (ii) an analysis of warning signs for the COVID-19 period; and (iii) a comparison with related surveillance methods (namely EARS C1, C2, C3) based on real and synthetic labeled data. Results: The MMAING ensemble demonstrated its effectiveness in early outbreak detection using both actual and synthetic data, outperforming other surveillance methods. It successfully detected early warning signals in synthetic data, achieving a probability of detection of 86%, a positive predictive value of 85%, and an average reliability of 79%. When compared to EARS C1, C2, and C3, it exhibited superior performance based on receiver operating characteristic (ROC) curve results on synthetic data. When evaluated on real-world data, MMAING performed on par with EARS C2. Notably, the MMAING ensemble accurately predicted the onset of the four waves of the COVID-19 period in Brazil, further validating its effectiveness in real-world scenarios. Conclusion: Identifying trends in time series data related to primary healthcare encounters indicated the possibility of developing a reliable method for the early detection of outbreaks. MMAING demonstrated consistent identification capabilities across various scenarios, outperforming established reference methods.

Suggested Citation

  • Borges, Dérick G. F. & Coutinho, Eluã R. & Cerqueira-Silva, Thiago & Grave, Malú & Vasconcelos, Adriano O. & Landau, Luiz & Coutinho, Alvaro L. G. A. & Ramos, Pablo Ivan P. & Barral-Netto, Manoel & Pi, 2025. "Combining machine learning and dynamic system techniques to early detection of respiratory outbreaks in routinely collected primary healthcare records," LSE Research Online Documents on Economics 127964, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:127964
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/127964/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:plo:pone00:0000758 is not listed on IDEAS
    2. Markus Goldstein & Seiichi Uchida, 2016. "A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-31, April.
    3. Lee Schruben, 1983. "Confidence Interval Estimation Using Standardized Time Series," Operations Research, INFORMS, vol. 31(6), pages 1090-1108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    2. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    3. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    4. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    5. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
    6. David Goldsman & Keebom Kang & Seong‐Hee Kim & Andrew F. Seila & Gamze Tokol, 2007. "Combining standardized time series area and Cramér–von Mises variance estimators," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 384-396, June.
    7. Ockerman, Daniel H. & Goldsman, David, 1999. "Student t-tests and compound tests to detect transients in simulated time series," European Journal of Operational Research, Elsevier, vol. 116(3), pages 681-691, August.
    8. Priyanga Dilini Talagala & Rob J Hyndman & Catherine Leigh & Kerrie Mengersen & Kate Smith-Miles, 2019. "A Feature-Based Framework for Detecting Technical Outliers in Water-Quality Data from In Situ Sensors," Monash Econometrics and Business Statistics Working Papers 1/19, Monash University, Department of Econometrics and Business Statistics.
    9. Cian Ryan & Finbarr Murphy & Martin Mullins, 2019. "Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1125-1140, May.
    10. Elmira Asadi-Fard & Samereh Falahatkar & Mahdi Tanha Ziyarati & Xiaodong Zhang & Mariapia Faruolo, 2023. "Assessment of RXD Algorithm Capability for Gas Flaring Detection through OLI-SWIR Channels," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    11. Kenichiro Nagata & Toshikazu Tsuji & Kimitaka Suetsugu & Kayoko Muraoka & Hiroyuki Watanabe & Akiko Kanaya & Nobuaki Egashira & Ichiro Ieiri, 2021. "Detection of overdose and underdose prescriptions—An unsupervised machine learning approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    12. Song, Wheyming Tina & Chih, Mingchang, 2013. "Run length not required: Optimal-mse dynamic batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 229(1), pages 114-123.
    13. Shuo Xu & Liyuan Hao & Xin An & Dongsheng Zhai & Hongshen Pang, 2019. "Types of DOI errors of cited references in Web of Science with a cleaning method," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1427-1437, September.
    14. Milan Miric & Hakan Ozalp & Erdem Dogukan Yilmaz, 2023. "Trade‐offs to using standardized tools: Innovation enablers or creativity constraints?," Strategic Management Journal, Wiley Blackwell, vol. 44(4), pages 909-942, April.
    15. Parminder Singh & Sujatha Krishnamoorthy & Anand Nayyar & Ashish Kr Luhach & Avinash Kaur, 2019. "Soft-computing-based false alarm reduction for hierarchical data of intrusion detection system," International Journal of Distributed Sensor Networks, , vol. 15(10), pages 15501477198, October.
    16. Erkuş, Ekin Can & Purutçuoğlu, Vilda, 2021. "Outlier detection and quasi-periodicity optimization algorithm: Frequency domain based outlier detection (FOD)," European Journal of Operational Research, Elsevier, vol. 291(2), pages 560-574.
    17. Gamze Tokol & David Goldsman & Daniel H. Ockerman & James J. Swain, 1998. "Standardized Time Series Lp-Norm Variance Estimators for Simulations," Management Science, INFORMS, vol. 44(2), pages 234-245, February.
    18. David Goldsman & Seong-Hee Kim & William S. Marshall & Barry L. Nelson, 2002. "Ranking and Selection for Steady-State Simulation: Procedures and Perspectives," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 2-19, February.
    19. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    20. Koning, A.J., 1999. "Goodness of fit for the constancy of a classical statistical model over time," Econometric Institute Research Papers EI 9959-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Keywords

    syndromic surveillance; reproduction number; primary healthcare data; machine learning; outbreak detection;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:127964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.