IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.02246.html
   My bibliography  Save this paper

Statistically consistent term structures have affine geometry

Author

Listed:
  • Paul Kruhner
  • Shijie Xu

Abstract

This paper is concerned with finite dimensional models for the entire term structure for energy futures. As soon as a finite dimensional set of possible yield curves is chosen, one likes to estimate the dynamic behaviour of the yield curve evolution from data. The estimated model should be free of arbitrage which is known to result in some drift condition. If the yield curve evolution is modelled by a diffusion, then this leaves the diffusion coefficient open for estimation. From a practical perspective, this requires that the chosen set of possible yield curves is compatible with any obtained diffusion coefficient. In this paper, we show that this compatibility enforces an affine geometry of the set of possible yield curves.

Suggested Citation

  • Paul Kruhner & Shijie Xu, 2023. "Statistically consistent term structures have affine geometry," Papers 2308.02246, arXiv.org.
  • Handle: RePEc:arx:papers:2308.02246
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.02246
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    2. Fred Espen Benth & Paul Krühner, 2018. "Approximation of forward curve models in commodity markets with arbitrage-free finite-dimensional models," Finance and Stochastics, Springer, vol. 22(2), pages 327-366, April.
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    4. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    5. repec:eme:mfppss:03074350510769703 is not listed on IDEAS
    6. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Xixuan Han & Boyu Wei & Hailiang Yang, 2018. "Index Options And Volatility Derivatives In A Gaussian Random Field Risk-Neutral Density Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    3. Alexander Badran & Beniamin Goldys, 2015. "A Market Model for VIX Futures," Papers 1504.00428, arXiv.org.
    4. Fred Benth & Jukka Lempa, 2014. "Optimal portfolios in commodity futures markets," Finance and Stochastics, Springer, vol. 18(2), pages 407-430, April.
    5. Andrew Papanicolaou, 2018. "Consistent Time-Homogeneous Modeling of SPX and VIX Derivatives," Papers 1812.05859, arXiv.org, revised Mar 2022.
    6. Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.
    7. Fred Espen Benth & Paul Krühner, 2018. "Approximation of forward curve models in commodity markets with arbitrage-free finite-dimensional models," Finance and Stochastics, Springer, vol. 22(2), pages 327-366, April.
    8. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    9. Elena Andreou & Eric Ghysels, 2014. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 168-171, April.
    10. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    11. Miguel Vazquez & Michelle Hallack, 2017. "The role of regulatory learning in energy transition: The case of solar PV in Brazil," IEFE Working Papers 90, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    12. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    13. Florian Bourgey & Stefano De Marco & Emmanuel Gobet, 2022. "Weak approximations and VIX option price expansions in forward variance curve models," Papers 2202.10413, arXiv.org, revised May 2022.
    14. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    15. Gilles Zumbach, 2009. "Volatility forecasts and the at-the-money implied volatility: a multi-components ARCH approach and its relation with market models," Papers 0901.2275, arXiv.org.
    16. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    17. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    18. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, April.
    19. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    20. Benth, Fred Espen & Paraschiv, Florentina, 2018. "A space-time random field model for electricity forward prices," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 203-216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.02246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.