IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.01198.html
   My bibliography  Save this paper

Analyzing the Reporting Error of Public Transport Trips in the Danish National Travel Survey Using Smart Card Data

Author

Listed:
  • Georges Sfeir
  • Filipe Rodrigues
  • Maya Abou Zeid
  • Francisco Camara Pereira

Abstract

Household travel surveys have been used for decades to collect individuals and households' travel behavior. However, self-reported surveys are subject to recall bias, as respondents might struggle to recall and report their activities accurately. This study examines the time reporting error of public transit users in a nationwide household travel survey by matching, at the individual level, five consecutive years of data from two sources, namely the Danish National Travel Survey (TU) and the Danish Smart Card system (Rejsekort). Survey respondents are matched with travel cards from the Rejsekort data solely based on the respondents' declared spatiotemporal travel behavior. Approximately, 70% of the respondents were successfully matched with Rejsekort travel cards. The findings reveal a median time reporting error of 11.34 minutes, with an Interquartile Range of 28.14 minutes. Furthermore, a statistical analysis was performed to explore the relationships between the survey respondents' reporting error and their socio-economic and demographic characteristics. The results indicate that females and respondents with a fixed schedule are in general more accurate than males and respondents with a flexible schedule in reporting their times of travel. Moreover, trips reported during weekdays or via the internet displayed higher accuracies compared to trips reported during weekends and holidays or via telephones. This disaggregated analysis provides valuable insights that could help in improving the design and analysis of travel surveys, as well accounting for reporting errors/biases in travel survey-based applications. Furthermore, it offers valuable insights underlying the psychology of travel recall by survey respondents.

Suggested Citation

  • Georges Sfeir & Filipe Rodrigues & Maya Abou Zeid & Francisco Camara Pereira, 2023. "Analyzing the Reporting Error of Public Transport Trips in the Danish National Travel Survey Using Smart Card Data," Papers 2308.01198, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2308.01198
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.01198
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Stopher & Camden FitzGerald & Min Xu, 2007. "Assessing the accuracy of the Sydney Household Travel Survey with GPS," Transportation, Springer, vol. 34(6), pages 723-741, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molloy, Joseph & Schatzmann, Thomas & Schoeman, Beaumont & Tchervenkov, Christopher & Hintermann, Beat & Axhausen, Kay W., 2021. "Observed impacts of the Covid-19 first wave on travel behaviour in Switzerland based on a large GPS panel," Transport Policy, Elsevier, vol. 104(C), pages 43-51.
    2. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    3. Stopher, Peter & Clifford, Eoin & Swann, Natalie & Zhang, Yun, 2009. "Evaluating voluntary travel behaviour change: Suggested guidelines and case studies," Transport Policy, Elsevier, vol. 16(6), pages 315-324, November.
    4. Aschauer, Florian & Hössinger, Reinhard & Jara-Diaz, Sergio & Schmid, Basil & Axhausen, Kay & Gerike, Regine, 2021. "Comprehensive data validation of a combined weekly time use and travel survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 66-82.
    5. Mars, Lidón & Arroyo, Rosa & Ruiz, Tomás, 2022. "Mobility and wellbeing during the covid-19 lockdown. Evidence from Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 107-129.
    6. Thomas, T. & Tutert, S.I.A., 2013. "An empirical model for trip distribution of commuters in The Netherlands: transferability in time and space reconsidered," Journal of Transport Geography, Elsevier, vol. 26(C), pages 158-165.
    7. Chiara Calastri & Romain Crastes dit Sourd & Stephane Hess, 2020. "We want it all: experiences from a survey seeking to capture social network structures, lifetime events and short-term travel and activity planning," Transportation, Springer, vol. 47(1), pages 175-201, February.
    8. Egu, Oscar & Bonnel, Patrick, 2020. "How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 267-282.
    9. Andrew Bwambale & Charisma F. Choudhury & Stephane Hess & Md. Shahadat Iqbal, 2021. "Getting the best of both worlds: a framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling," Transportation, Springer, vol. 48(5), pages 2287-2314, October.
    10. Mofeng Yang & Yixuan Pan & Aref Darzi & Sepehr Ghader & Chenfeng Xiong & Lei Zhang, 2022. "A data-driven travel mode share estimation framework based on mobile device location data," Transportation, Springer, vol. 49(5), pages 1339-1383, October.
    11. Andreas Dypvik Landmark & Petter Arnesen & Carl-Johan Södersten & Odd André Hjelkrem, 2021. "Mobile phone data in transportation research: methods for benchmarking against other data sources," Transportation, Springer, vol. 48(5), pages 2883-2905, October.
    12. Guangnian Xiao & Qin Cheng & Chunqin Zhang, 2019. "Detecting travel modes from smartphone-based travel surveys with continuous hidden Markov models," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    13. Yongsung Lee & Giovanni Circella & Patricia L. Mokhtarian & Subhrajit Guhathakurta, 2020. "Are millennials more multimodal? A latent-class cluster analysis with attitudes and preferences among millennial and Generation X commuters in California," Transportation, Springer, vol. 47(5), pages 2505-2528, October.
    14. Andersson, Angelica & Engelson, Leonid & Börjesson, Maria & Daly, Andrew & Kristoffersson, Ida, 2021. "Long-distance mode choice model estimation using mobile phone network data," Papers 2021:1, Research Programme in Transport Economics.
    15. Caroline Bayart & Patrick Bonnel, 2012. "Combining web and face-to-face in travel surveys: comparability challenges?," Transportation, Springer, vol. 39(6), pages 1147-1171, November.
    16. Allen, Jeff & Farber, Steven, 2020. "Planning transport for social inclusion: An accessibility-activity participation approach," SocArXiv ap7wh, Center for Open Science.
    17. Allister Loder & Fabienne Cantner & Victoria Dahmen & Klaus Bogenberger, 2023. "The Mobilit\"at.Leben Study: a Year-Long Mobility-Tracking Panel," Papers 2308.04973, arXiv.org.
    18. Millward, Hugh & Spinney, Jamie, 2011. "Time use, travel behavior, and the rural–urban continuum: results from the Halifax STAR project," Journal of Transport Geography, Elsevier, vol. 19(1), pages 51-58.
    19. Andre Carrel & Raja Sengupta & Joan L. Walker, 2017. "The San Francisco Travel Quality Study: tracking trials and tribulations of a transit taker," Transportation, Springer, vol. 44(4), pages 643-679, July.
    20. Shen, Yue & Kwan, Mei-Po & Chai, Yanwei, 2013. "Investigating commuting flexibility with GPS data and 3D geovisualization: a case study of Beijing, China," Journal of Transport Geography, Elsevier, vol. 32(C), pages 1-11.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.01198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.