IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.03693.html
   My bibliography  Save this paper

Are there Dragon Kings in the Stock Market?

Author

Listed:
  • Jiong Liu
  • M. Dashti Moghaddam
  • R. A. Serota

Abstract

We undertake a systematic study of historic market volatility spanning roughly five preceding decades. We focus specifically on the time series of realized volatility (RV) of the S&P500 index and its distribution function. As expected, the largest values of RV coincide with the largest economic upheavals of the period: Savings and Loan Crisis, Tech Bubble, Financial Crisis and Covid Pandemic. We address the question of whether these values belong to one of the three categories: Black Swans (BS), that is they lie on scale-free, power-law tails of the distribution; Dragon Kings (DK), defined as statistically significant upward deviations from BS; or Negative Dragons Kings (nDK), defined as statistically significant downward deviations from BS. In analyzing the tails of the distribution with RV > 40, we observe the appearance of "potential" DK which eventually terminate in an abrupt plunge to nDK. This phenomenon becomes more pronounced with the increase of the number of days over which the average RV is calculated -- here from daily, n=1, to "monthly," n=21. We fit the entire distribution with a modified Generalized Beta (mGB) distribution function, which terminates at a finite value of the variable but exhibits a long power-law stretch prior to that, as well as Generalized Beta Prime (GB2) distribution function, which has a power-law tail. We also fit the tails directly with a straight line on a log-log scale. In order to ascertain BS, DK or nDK behavior, all fits include their confidence intervals and p-values are evaluated for the data points to check if they can come from the respective distributions.

Suggested Citation

  • Jiong Liu & M. Dashti Moghaddam & R. A. Serota, 2023. "Are there Dragon Kings in the Stock Market?," Papers 2307.03693, arXiv.org.
  • Handle: RePEc:arx:papers:2307.03693
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.03693
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Dashti Moghaddam & Jiong Liu & R. A. Serota, 2021. "Implied and realized volatility: A study of distributions and the distribution of difference," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2581-2594, April.
    2. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2019. "Distribution of Historic Market Data ¨C Implied and Realized Volatility," Applied Economics and Finance, Redfame publishing, vol. 6(5), pages 104-130, September.
    3. Didier SORNETTE, 2009. "Dragon-Kings, Black Swans and the Prediction of Crises," Swiss Finance Institute Research Paper Series 09-36, Swiss Finance Institute.
    4. Zhiyuan Liu & M. Dashti Moghaddam & R. A. Serota, 2019. "Distributions of historic market data – stock returns," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(3), pages 1-10, March.
    5. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    2. Hamed Farahani & R. A. Serota, 2025. "Asymmetry in Distributions of Accumulated Gains and Losses in Stock Returns," Papers 2503.24241, arXiv.org.
    3. Jiong Liu & R. A. Serota, 2022. "Rethinking Generalized Beta Family of Distributions," Papers 2209.05225, arXiv.org.
    4. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    5. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    6. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    7. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    8. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    9. A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach," Papers 1301.6506, arXiv.org.
    10. Santos, Moises S. & Szezech, José D. & Batista, Antonio M. & Iarosz, Kelly C. & Caldas, Iberê L. & Viana, Ricardo L., 2019. "Dragon-kings death in nonlinear wave interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Feng Shi & John Paul Broussard & G. Geoffrey Booth, 2025. "The complex nature of financial market microstructure: the case of a stock market crash," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 20(1), pages 1-40, January.
    12. Gianluca Pescaroli & David Alexander, 2018. "Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2245-2257, November.
    13. J. Lorenz & S. Battiston & F. Schweitzer, 2009. "Systemic risk in a unifying framework for cascading processes on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 441-460, October.
    14. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    15. Rebecca Westphal & Didier Sornette, 2019. "Market Impact and Performance of Arbitrageurs of Financial Bubbles in An Agent-Based Model," Swiss Finance Institute Research Paper Series 19-29, Swiss Finance Institute.
    16. Kozłowska, M. & Denys, M. & Wiliński, M. & Link, G. & Gubiec, T. & Werner, T.R. & Kutner, R. & Struzik, Z.R., 2016. "Dynamic bifurcations on financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 126-142.
    17. Chen, Shi & Huang, Fu-Wei & Lin, Jyh-Horng, 2023. "Green technology choices under the cap-and-trade mechanism with insurer green finance in a dragon-king environment," Energy Economics, Elsevier, vol. 117(C).
    18. Milovanov, Alexander V. & Rasmussen, Jens Juul & Groslambert, Bertrand, 2021. "Black swans, extreme risks, and the e-pile model of self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    19. Rodríguez-Martínez, C.M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2021. "A multi-scale symmetry analysis of uninterrupted trends returns in daily financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    20. Daniel Traian Pele & Miruna Mazurencu-Marinescu & Peter Nijkamp, 2013. "Herding Behaviour, Bubbles and Log Periodic Power Laws in Illiquid Stock Markets. A Case Study on the Bucharest Stock Exchange," Tinbergen Institute Discussion Papers 13-109/VIII, Tinbergen Institute.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.03693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.